Loading…

Microengineered synthetic cellular microenvironment for stem cells

Stem cells possess the ability of self‐renewal and differentiation into specific cell types. Therefore, stem cells have great potentials in fundamental biology studies and clinical applications. The most urgent desire for stem cell research is to generate appropriate artificial stem cell culture sys...

Full description

Saved in:
Bibliographic Details
Published in:Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2012-07, Vol.4 (4), p.414-427
Main Authors: Sun, Yubing, Weng, Shinuo, Fu, Jianping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4815-c7c4644e56c678c03fab761004d0613de85995f501f8a6ff47cffbd046046e383
cites cdi_FETCH-LOGICAL-c4815-c7c4644e56c678c03fab761004d0613de85995f501f8a6ff47cffbd046046e383
container_end_page 427
container_issue 4
container_start_page 414
container_title Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
container_volume 4
creator Sun, Yubing
Weng, Shinuo
Fu, Jianping
description Stem cells possess the ability of self‐renewal and differentiation into specific cell types. Therefore, stem cells have great potentials in fundamental biology studies and clinical applications. The most urgent desire for stem cell research is to generate appropriate artificial stem cell culture system, which can mimic the dynamic complexity and precise regulation of the in vivo biochemical and biomechanical signals, to regulate and direct stem cell behaviors. Precise control and regulation of the biochemical and biomechanical stimuli to stem cells have been successfully achieved using emerging micro/nanoengineering techniques. This review provides insights into how these micro/nanoengineering approaches, particularly microcontact printing and elastomeric micropost array, are applied to create dynamic and complex environment for stem cells culture. WIREs Nanomed Nanobiotechnol 2012, 4:414–427. doi: 10.1002/wnan.1175 This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement
doi_str_mv 10.1002/wnan.1175
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4109891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007945632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4815-c7c4644e56c678c03fab761004d0613de85995f501f8a6ff47cffbd046046e383</originalsourceid><addsrcrecordid>eNp1kV9PFTEQxRuiAUQf_AJmE1_0YaH_d_tCgldFA0IwGh-b3u4UCrtdbHfB--3tstcbNDFpMk36m9MzcxB6SfA-wZge3AcT9gmpxBbaJYqpEmNOnqzvghC5g56ldI2x5JKKbbRDqWSKc7aL3n3xNvYQLn0AiNAUaRWGKxi8LSy07diaWHQzcudjHzoIQ-H6WKQBugckPUdPnWkTvFjXPfT944dvi0_l6fnx58XRaWl5TURpK8sl5yCklVVtMXNmWcnsnzdYEtZALZQSTmDiaiOd45V1btlgLvMBVrM9dDjr3o7LDhqbnUTT6tvoOxNXujde__0S_JW-7O80J1jVimSBN2uB2P8cIQ2682kawQTox6QJpoQLKtT01-t_0Ot-jCGPpynGleJCMpqptzOV95NSBLcxQ7CektFTMnpKJrOvHrvfkH-iyMDBDNz7Flb_V9I_zo7O1pLl3OFzGL82HSbeaFmxB_JYnyj8lb9fUH3BfgNqiagm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007945632</pqid></control><display><type>article</type><title>Microengineered synthetic cellular microenvironment for stem cells</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Sun, Yubing ; Weng, Shinuo ; Fu, Jianping</creator><creatorcontrib>Sun, Yubing ; Weng, Shinuo ; Fu, Jianping</creatorcontrib><description>Stem cells possess the ability of self‐renewal and differentiation into specific cell types. Therefore, stem cells have great potentials in fundamental biology studies and clinical applications. The most urgent desire for stem cell research is to generate appropriate artificial stem cell culture system, which can mimic the dynamic complexity and precise regulation of the in vivo biochemical and biomechanical signals, to regulate and direct stem cell behaviors. Precise control and regulation of the biochemical and biomechanical stimuli to stem cells have been successfully achieved using emerging micro/nanoengineering techniques. This review provides insights into how these micro/nanoengineering approaches, particularly microcontact printing and elastomeric micropost array, are applied to create dynamic and complex environment for stem cells culture. WIREs Nanomed Nanobiotechnol 2012, 4:414–427. doi: 10.1002/wnan.1175 This article is categorized under: Nanotechnology Approaches to Biology &gt; Nanoscale Systems in Biology Implantable Materials and Surgical Technologies &gt; Nanotechnology in Tissue Repair and Replacement</description><identifier>ISSN: 1939-5116</identifier><identifier>EISSN: 1939-0041</identifier><identifier>DOI: 10.1002/wnan.1175</identifier><identifier>PMID: 22639443</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Biology ; Biomechanics ; Cell culture ; Cell Culture Techniques - methods ; Cell self-renewal ; Cellular Microenvironment ; Complexity ; Elastomers ; Extracellular Matrix - metabolism ; Humans ; Microfluidics - methods ; Nanoengineering ; Nanotechnology ; Stem cells ; Stem Cells - cytology ; Stem Cells - metabolism ; Surgery ; Surgical equipment ; Surgical implants ; Therapeutic applications</subject><ispartof>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 2012-07, Vol.4 (4), p.414-427</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. Jul/Aug 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4815-c7c4644e56c678c03fab761004d0613de85995f501f8a6ff47cffbd046046e383</citedby><cites>FETCH-LOGICAL-c4815-c7c4644e56c678c03fab761004d0613de85995f501f8a6ff47cffbd046046e383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22639443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Yubing</creatorcontrib><creatorcontrib>Weng, Shinuo</creatorcontrib><creatorcontrib>Fu, Jianping</creatorcontrib><title>Microengineered synthetic cellular microenvironment for stem cells</title><title>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology</title><addtitle>WIREs Nanomed Nanobiotechnol</addtitle><description>Stem cells possess the ability of self‐renewal and differentiation into specific cell types. Therefore, stem cells have great potentials in fundamental biology studies and clinical applications. The most urgent desire for stem cell research is to generate appropriate artificial stem cell culture system, which can mimic the dynamic complexity and precise regulation of the in vivo biochemical and biomechanical signals, to regulate and direct stem cell behaviors. Precise control and regulation of the biochemical and biomechanical stimuli to stem cells have been successfully achieved using emerging micro/nanoengineering techniques. This review provides insights into how these micro/nanoengineering approaches, particularly microcontact printing and elastomeric micropost array, are applied to create dynamic and complex environment for stem cells culture. WIREs Nanomed Nanobiotechnol 2012, 4:414–427. doi: 10.1002/wnan.1175 This article is categorized under: Nanotechnology Approaches to Biology &gt; Nanoscale Systems in Biology Implantable Materials and Surgical Technologies &gt; Nanotechnology in Tissue Repair and Replacement</description><subject>Animals</subject><subject>Biology</subject><subject>Biomechanics</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell self-renewal</subject><subject>Cellular Microenvironment</subject><subject>Complexity</subject><subject>Elastomers</subject><subject>Extracellular Matrix - metabolism</subject><subject>Humans</subject><subject>Microfluidics - methods</subject><subject>Nanoengineering</subject><subject>Nanotechnology</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Surgery</subject><subject>Surgical equipment</subject><subject>Surgical implants</subject><subject>Therapeutic applications</subject><issn>1939-5116</issn><issn>1939-0041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kV9PFTEQxRuiAUQf_AJmE1_0YaH_d_tCgldFA0IwGh-b3u4UCrtdbHfB--3tstcbNDFpMk36m9MzcxB6SfA-wZge3AcT9gmpxBbaJYqpEmNOnqzvghC5g56ldI2x5JKKbbRDqWSKc7aL3n3xNvYQLn0AiNAUaRWGKxi8LSy07diaWHQzcudjHzoIQ-H6WKQBugckPUdPnWkTvFjXPfT944dvi0_l6fnx58XRaWl5TURpK8sl5yCklVVtMXNmWcnsnzdYEtZALZQSTmDiaiOd45V1btlgLvMBVrM9dDjr3o7LDhqbnUTT6tvoOxNXujde__0S_JW-7O80J1jVimSBN2uB2P8cIQ2682kawQTox6QJpoQLKtT01-t_0Ot-jCGPpynGleJCMpqptzOV95NSBLcxQ7CektFTMnpKJrOvHrvfkH-iyMDBDNz7Flb_V9I_zo7O1pLl3OFzGL82HSbeaFmxB_JYnyj8lb9fUH3BfgNqiagm</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Sun, Yubing</creator><creator>Weng, Shinuo</creator><creator>Fu, Jianping</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201207</creationdate><title>Microengineered synthetic cellular microenvironment for stem cells</title><author>Sun, Yubing ; Weng, Shinuo ; Fu, Jianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4815-c7c4644e56c678c03fab761004d0613de85995f501f8a6ff47cffbd046046e383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Biology</topic><topic>Biomechanics</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell self-renewal</topic><topic>Cellular Microenvironment</topic><topic>Complexity</topic><topic>Elastomers</topic><topic>Extracellular Matrix - metabolism</topic><topic>Humans</topic><topic>Microfluidics - methods</topic><topic>Nanoengineering</topic><topic>Nanotechnology</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Surgery</topic><topic>Surgical equipment</topic><topic>Surgical implants</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yubing</creatorcontrib><creatorcontrib>Weng, Shinuo</creatorcontrib><creatorcontrib>Fu, Jianping</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yubing</au><au>Weng, Shinuo</au><au>Fu, Jianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microengineered synthetic cellular microenvironment for stem cells</atitle><jtitle>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology</jtitle><addtitle>WIREs Nanomed Nanobiotechnol</addtitle><date>2012-07</date><risdate>2012</risdate><volume>4</volume><issue>4</issue><spage>414</spage><epage>427</epage><pages>414-427</pages><issn>1939-5116</issn><eissn>1939-0041</eissn><abstract>Stem cells possess the ability of self‐renewal and differentiation into specific cell types. Therefore, stem cells have great potentials in fundamental biology studies and clinical applications. The most urgent desire for stem cell research is to generate appropriate artificial stem cell culture system, which can mimic the dynamic complexity and precise regulation of the in vivo biochemical and biomechanical signals, to regulate and direct stem cell behaviors. Precise control and regulation of the biochemical and biomechanical stimuli to stem cells have been successfully achieved using emerging micro/nanoengineering techniques. This review provides insights into how these micro/nanoengineering approaches, particularly microcontact printing and elastomeric micropost array, are applied to create dynamic and complex environment for stem cells culture. WIREs Nanomed Nanobiotechnol 2012, 4:414–427. doi: 10.1002/wnan.1175 This article is categorized under: Nanotechnology Approaches to Biology &gt; Nanoscale Systems in Biology Implantable Materials and Surgical Technologies &gt; Nanotechnology in Tissue Repair and Replacement</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>22639443</pmid><doi>10.1002/wnan.1175</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-5116
ispartof Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 2012-07, Vol.4 (4), p.414-427
issn 1939-5116
1939-0041
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4109891
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Animals
Biology
Biomechanics
Cell culture
Cell Culture Techniques - methods
Cell self-renewal
Cellular Microenvironment
Complexity
Elastomers
Extracellular Matrix - metabolism
Humans
Microfluidics - methods
Nanoengineering
Nanotechnology
Stem cells
Stem Cells - cytology
Stem Cells - metabolism
Surgery
Surgical equipment
Surgical implants
Therapeutic applications
title Microengineered synthetic cellular microenvironment for stem cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microengineered%20synthetic%20cellular%20microenvironment%20for%20stem%20cells&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Nanomedicine%20and%20nanobiotechnology&rft.au=Sun,%20Yubing&rft.date=2012-07&rft.volume=4&rft.issue=4&rft.spage=414&rft.epage=427&rft.pages=414-427&rft.issn=1939-5116&rft.eissn=1939-0041&rft_id=info:doi/10.1002/wnan.1175&rft_dat=%3Cproquest_pubme%3E2007945632%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4815-c7c4644e56c678c03fab761004d0613de85995f501f8a6ff47cffbd046046e383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2007945632&rft_id=info:pmid/22639443&rfr_iscdi=true