Loading…
Microengineered synthetic cellular microenvironment for stem cells
Stem cells possess the ability of self‐renewal and differentiation into specific cell types. Therefore, stem cells have great potentials in fundamental biology studies and clinical applications. The most urgent desire for stem cell research is to generate appropriate artificial stem cell culture sys...
Saved in:
Published in: | Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2012-07, Vol.4 (4), p.414-427 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4815-c7c4644e56c678c03fab761004d0613de85995f501f8a6ff47cffbd046046e383 |
---|---|
cites | cdi_FETCH-LOGICAL-c4815-c7c4644e56c678c03fab761004d0613de85995f501f8a6ff47cffbd046046e383 |
container_end_page | 427 |
container_issue | 4 |
container_start_page | 414 |
container_title | Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology |
container_volume | 4 |
creator | Sun, Yubing Weng, Shinuo Fu, Jianping |
description | Stem cells possess the ability of self‐renewal and differentiation into specific cell types. Therefore, stem cells have great potentials in fundamental biology studies and clinical applications. The most urgent desire for stem cell research is to generate appropriate artificial stem cell culture system, which can mimic the dynamic complexity and precise regulation of the in vivo biochemical and biomechanical signals, to regulate and direct stem cell behaviors. Precise control and regulation of the biochemical and biomechanical stimuli to stem cells have been successfully achieved using emerging micro/nanoengineering techniques. This review provides insights into how these micro/nanoengineering approaches, particularly microcontact printing and elastomeric micropost array, are applied to create dynamic and complex environment for stem cells culture. WIREs Nanomed Nanobiotechnol 2012, 4:414–427. doi: 10.1002/wnan.1175
This article is categorized under:
Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement |
doi_str_mv | 10.1002/wnan.1175 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4109891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007945632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4815-c7c4644e56c678c03fab761004d0613de85995f501f8a6ff47cffbd046046e383</originalsourceid><addsrcrecordid>eNp1kV9PFTEQxRuiAUQf_AJmE1_0YaH_d_tCgldFA0IwGh-b3u4UCrtdbHfB--3tstcbNDFpMk36m9MzcxB6SfA-wZge3AcT9gmpxBbaJYqpEmNOnqzvghC5g56ldI2x5JKKbbRDqWSKc7aL3n3xNvYQLn0AiNAUaRWGKxi8LSy07diaWHQzcudjHzoIQ-H6WKQBugckPUdPnWkTvFjXPfT944dvi0_l6fnx58XRaWl5TURpK8sl5yCklVVtMXNmWcnsnzdYEtZALZQSTmDiaiOd45V1btlgLvMBVrM9dDjr3o7LDhqbnUTT6tvoOxNXujde__0S_JW-7O80J1jVimSBN2uB2P8cIQ2682kawQTox6QJpoQLKtT01-t_0Ot-jCGPpynGleJCMpqptzOV95NSBLcxQ7CektFTMnpKJrOvHrvfkH-iyMDBDNz7Flb_V9I_zo7O1pLl3OFzGL82HSbeaFmxB_JYnyj8lb9fUH3BfgNqiagm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007945632</pqid></control><display><type>article</type><title>Microengineered synthetic cellular microenvironment for stem cells</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Sun, Yubing ; Weng, Shinuo ; Fu, Jianping</creator><creatorcontrib>Sun, Yubing ; Weng, Shinuo ; Fu, Jianping</creatorcontrib><description>Stem cells possess the ability of self‐renewal and differentiation into specific cell types. Therefore, stem cells have great potentials in fundamental biology studies and clinical applications. The most urgent desire for stem cell research is to generate appropriate artificial stem cell culture system, which can mimic the dynamic complexity and precise regulation of the in vivo biochemical and biomechanical signals, to regulate and direct stem cell behaviors. Precise control and regulation of the biochemical and biomechanical stimuli to stem cells have been successfully achieved using emerging micro/nanoengineering techniques. This review provides insights into how these micro/nanoengineering approaches, particularly microcontact printing and elastomeric micropost array, are applied to create dynamic and complex environment for stem cells culture. WIREs Nanomed Nanobiotechnol 2012, 4:414–427. doi: 10.1002/wnan.1175
This article is categorized under:
Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement</description><identifier>ISSN: 1939-5116</identifier><identifier>EISSN: 1939-0041</identifier><identifier>DOI: 10.1002/wnan.1175</identifier><identifier>PMID: 22639443</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Animals ; Biology ; Biomechanics ; Cell culture ; Cell Culture Techniques - methods ; Cell self-renewal ; Cellular Microenvironment ; Complexity ; Elastomers ; Extracellular Matrix - metabolism ; Humans ; Microfluidics - methods ; Nanoengineering ; Nanotechnology ; Stem cells ; Stem Cells - cytology ; Stem Cells - metabolism ; Surgery ; Surgical equipment ; Surgical implants ; Therapeutic applications</subject><ispartof>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 2012-07, Vol.4 (4), p.414-427</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. Jul/Aug 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4815-c7c4644e56c678c03fab761004d0613de85995f501f8a6ff47cffbd046046e383</citedby><cites>FETCH-LOGICAL-c4815-c7c4644e56c678c03fab761004d0613de85995f501f8a6ff47cffbd046046e383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22639443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Yubing</creatorcontrib><creatorcontrib>Weng, Shinuo</creatorcontrib><creatorcontrib>Fu, Jianping</creatorcontrib><title>Microengineered synthetic cellular microenvironment for stem cells</title><title>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology</title><addtitle>WIREs Nanomed Nanobiotechnol</addtitle><description>Stem cells possess the ability of self‐renewal and differentiation into specific cell types. Therefore, stem cells have great potentials in fundamental biology studies and clinical applications. The most urgent desire for stem cell research is to generate appropriate artificial stem cell culture system, which can mimic the dynamic complexity and precise regulation of the in vivo biochemical and biomechanical signals, to regulate and direct stem cell behaviors. Precise control and regulation of the biochemical and biomechanical stimuli to stem cells have been successfully achieved using emerging micro/nanoengineering techniques. This review provides insights into how these micro/nanoengineering approaches, particularly microcontact printing and elastomeric micropost array, are applied to create dynamic and complex environment for stem cells culture. WIREs Nanomed Nanobiotechnol 2012, 4:414–427. doi: 10.1002/wnan.1175
This article is categorized under:
Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement</description><subject>Animals</subject><subject>Biology</subject><subject>Biomechanics</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell self-renewal</subject><subject>Cellular Microenvironment</subject><subject>Complexity</subject><subject>Elastomers</subject><subject>Extracellular Matrix - metabolism</subject><subject>Humans</subject><subject>Microfluidics - methods</subject><subject>Nanoengineering</subject><subject>Nanotechnology</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Surgery</subject><subject>Surgical equipment</subject><subject>Surgical implants</subject><subject>Therapeutic applications</subject><issn>1939-5116</issn><issn>1939-0041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kV9PFTEQxRuiAUQf_AJmE1_0YaH_d_tCgldFA0IwGh-b3u4UCrtdbHfB--3tstcbNDFpMk36m9MzcxB6SfA-wZge3AcT9gmpxBbaJYqpEmNOnqzvghC5g56ldI2x5JKKbbRDqWSKc7aL3n3xNvYQLn0AiNAUaRWGKxi8LSy07diaWHQzcudjHzoIQ-H6WKQBugckPUdPnWkTvFjXPfT944dvi0_l6fnx58XRaWl5TURpK8sl5yCklVVtMXNmWcnsnzdYEtZALZQSTmDiaiOd45V1btlgLvMBVrM9dDjr3o7LDhqbnUTT6tvoOxNXujde__0S_JW-7O80J1jVimSBN2uB2P8cIQ2682kawQTox6QJpoQLKtT01-t_0Ot-jCGPpynGleJCMpqptzOV95NSBLcxQ7CektFTMnpKJrOvHrvfkH-iyMDBDNz7Flb_V9I_zo7O1pLl3OFzGL82HSbeaFmxB_JYnyj8lb9fUH3BfgNqiagm</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Sun, Yubing</creator><creator>Weng, Shinuo</creator><creator>Fu, Jianping</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201207</creationdate><title>Microengineered synthetic cellular microenvironment for stem cells</title><author>Sun, Yubing ; Weng, Shinuo ; Fu, Jianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4815-c7c4644e56c678c03fab761004d0613de85995f501f8a6ff47cffbd046046e383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Biology</topic><topic>Biomechanics</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell self-renewal</topic><topic>Cellular Microenvironment</topic><topic>Complexity</topic><topic>Elastomers</topic><topic>Extracellular Matrix - metabolism</topic><topic>Humans</topic><topic>Microfluidics - methods</topic><topic>Nanoengineering</topic><topic>Nanotechnology</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Surgery</topic><topic>Surgical equipment</topic><topic>Surgical implants</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yubing</creatorcontrib><creatorcontrib>Weng, Shinuo</creatorcontrib><creatorcontrib>Fu, Jianping</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yubing</au><au>Weng, Shinuo</au><au>Fu, Jianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microengineered synthetic cellular microenvironment for stem cells</atitle><jtitle>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology</jtitle><addtitle>WIREs Nanomed Nanobiotechnol</addtitle><date>2012-07</date><risdate>2012</risdate><volume>4</volume><issue>4</issue><spage>414</spage><epage>427</epage><pages>414-427</pages><issn>1939-5116</issn><eissn>1939-0041</eissn><abstract>Stem cells possess the ability of self‐renewal and differentiation into specific cell types. Therefore, stem cells have great potentials in fundamental biology studies and clinical applications. The most urgent desire for stem cell research is to generate appropriate artificial stem cell culture system, which can mimic the dynamic complexity and precise regulation of the in vivo biochemical and biomechanical signals, to regulate and direct stem cell behaviors. Precise control and regulation of the biochemical and biomechanical stimuli to stem cells have been successfully achieved using emerging micro/nanoengineering techniques. This review provides insights into how these micro/nanoengineering approaches, particularly microcontact printing and elastomeric micropost array, are applied to create dynamic and complex environment for stem cells culture. WIREs Nanomed Nanobiotechnol 2012, 4:414–427. doi: 10.1002/wnan.1175
This article is categorized under:
Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>22639443</pmid><doi>10.1002/wnan.1175</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-5116 |
ispartof | Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 2012-07, Vol.4 (4), p.414-427 |
issn | 1939-5116 1939-0041 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4109891 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Animals Biology Biomechanics Cell culture Cell Culture Techniques - methods Cell self-renewal Cellular Microenvironment Complexity Elastomers Extracellular Matrix - metabolism Humans Microfluidics - methods Nanoengineering Nanotechnology Stem cells Stem Cells - cytology Stem Cells - metabolism Surgery Surgical equipment Surgical implants Therapeutic applications |
title | Microengineered synthetic cellular microenvironment for stem cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microengineered%20synthetic%20cellular%20microenvironment%20for%20stem%20cells&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Nanomedicine%20and%20nanobiotechnology&rft.au=Sun,%20Yubing&rft.date=2012-07&rft.volume=4&rft.issue=4&rft.spage=414&rft.epage=427&rft.pages=414-427&rft.issn=1939-5116&rft.eissn=1939-0041&rft_id=info:doi/10.1002/wnan.1175&rft_dat=%3Cproquest_pubme%3E2007945632%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4815-c7c4644e56c678c03fab761004d0613de85995f501f8a6ff47cffbd046046e383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2007945632&rft_id=info:pmid/22639443&rfr_iscdi=true |