Loading…

Optic nerve crush induces spatial and temporal gene expression patterns in retina and optic nerve of BALB/cJ mice

Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of cellular and molecular events resulting in neuronal apoptosis and regenerative failure. The pathogenic mechanisms and gene expression changes associated with these detrimental events can be effectively studied u...

Full description

Saved in:
Bibliographic Details
Published in:Molecular neurodegeneration 2014-04, Vol.9 (1), p.14-14, Article 14
Main Authors: Sharma, Tasneem P, McDowell, Colleen M, Liu, Yang, Wagner, Alex H, Thole, David, Faga, Benjamin P, Wordinger, Robert J, Braun, Terry A, Clark, Abbot F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c584t-7b4be631f861d3cf29c167ef67076accff9ab4f0dc31c1f47ce35a98edf35f393
cites cdi_FETCH-LOGICAL-c584t-7b4be631f861d3cf29c167ef67076accff9ab4f0dc31c1f47ce35a98edf35f393
container_end_page 14
container_issue 1
container_start_page 14
container_title Molecular neurodegeneration
container_volume 9
creator Sharma, Tasneem P
McDowell, Colleen M
Liu, Yang
Wagner, Alex H
Thole, David
Faga, Benjamin P
Wordinger, Robert J
Braun, Terry A
Clark, Abbot F
description Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of cellular and molecular events resulting in neuronal apoptosis and regenerative failure. The pathogenic mechanisms and gene expression changes associated with these detrimental events can be effectively studied using a rodent optic nerve crush (ONC) model. The purpose of this study was to use a mouse ONC model to: (a) evaluate changes in retina and optic nerve (ON) gene expression, (b) identify neurodegenerative pathogenic pathways and (c) discover potential new therapeutic targets. Only 54% of total neurons survived in the ganglion cell layer (GCL) 28 days post crush. Using Bayesian Estimation of Temporal Regulation (BETR) gene expression analysis, we identified significantly altered expression of 1,723 and 2,110 genes in the retina and ON, respectively. Meta-analysis of altered gene expression (≥1.5, ≤-1.5, p 
doi_str_mv 10.1186/1750-1326-9-14
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4113182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A540650740</galeid><sourcerecordid>A540650740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-7b4be631f861d3cf29c167ef67076accff9ab4f0dc31c1f47ce35a98edf35f393</originalsourceid><addsrcrecordid>eNqNks1vFSEUxSdGY2t169KQuHEzLQxfw8bktana5iXd6JrwmMsrzQxMYabR_16m1udr04VhAVx-9wQOp6reE3xMSCtOiOS4JrQRtaoJe1Ed7gov99YH1ZucbzBmEmP-ujpomBSSM35Y3V6Nk7coQLoDZNOcr5EP3WwhozyayZsemdChCYYxprLZQgAEP8cEOfsYUGEmSCGXLpRg8sHc83FPNTp0ulqfnthLNHgLb6tXzvQZ3j3MR9WPL-ffz77V66uvF2erdW15y6ZabtgGBCWuFaSj1jXKEiHBCYmlMNY6p8yGOdxZSixxTFqg3KgWOke5o4oeVZ__6I7zZoDOQpjKA_SY_GDSLx2N149Pgr_W23inGSGUtE0R-PQgkOLtDHnSg88W-t4EiHPWhNPio2oa9h9ooxRlQomCfnyC3sQ5heLEQrHyP0zIf9TW9KB9cLFc0S6iesUZFhxLhgt1_AxVRgfF6RjA-VJ_rsGmmHMCt7ODYL3kSS-R0UtktNJkediHfRN3-N8A0d98KcT0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524005467</pqid></control><display><type>article</type><title>Optic nerve crush induces spatial and temporal gene expression patterns in retina and optic nerve of BALB/cJ mice</title><source>Publicly Available Content Database</source><source>PubMed</source><source>Free Full-Text Journals in Chemistry</source><creator>Sharma, Tasneem P ; McDowell, Colleen M ; Liu, Yang ; Wagner, Alex H ; Thole, David ; Faga, Benjamin P ; Wordinger, Robert J ; Braun, Terry A ; Clark, Abbot F</creator><creatorcontrib>Sharma, Tasneem P ; McDowell, Colleen M ; Liu, Yang ; Wagner, Alex H ; Thole, David ; Faga, Benjamin P ; Wordinger, Robert J ; Braun, Terry A ; Clark, Abbot F</creatorcontrib><description>Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of cellular and molecular events resulting in neuronal apoptosis and regenerative failure. The pathogenic mechanisms and gene expression changes associated with these detrimental events can be effectively studied using a rodent optic nerve crush (ONC) model. The purpose of this study was to use a mouse ONC model to: (a) evaluate changes in retina and optic nerve (ON) gene expression, (b) identify neurodegenerative pathogenic pathways and (c) discover potential new therapeutic targets. Only 54% of total neurons survived in the ganglion cell layer (GCL) 28 days post crush. Using Bayesian Estimation of Temporal Regulation (BETR) gene expression analysis, we identified significantly altered expression of 1,723 and 2,110 genes in the retina and ON, respectively. Meta-analysis of altered gene expression (≥1.5, ≤-1.5, p &lt; 0.05) using Partek and DAVID demonstrated 28 up and 20 down-regulated retinal gene clusters and 57 up and 41 down-regulated optic nerve clusters. Regulated gene clusters included regenerative change, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. Expression of selected genes (Vsnl1, Syt1, Synpr and Nrn1) from retinal and ON neuronal clusters were quantitatively and qualitatively examined for their relation to axonal neurodegeneration by immunohistochemistry and qRT-PCR. A number of detrimental gene expression changes occur that contribute to trauma-induced neurodegeneration after injury to ON axons. Nrn1 (synaptic plasticity gene), Synpr and Syt1 (synaptic vesicle fusion genes), and Vsnl1 (neuron differentiation associated gene) were a few of the potentially unique genes identified that were down-regulated spatially and temporally in our rodent ONC model. Bioinformatic meta-analysis identified significant tissue-specific and time-dependent gene clusters associated with regenerative changes, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. These ONC induced neuronal loss and regenerative failure associated clusters can be extrapolated to changes occurring in other forms of CNS trauma or in clinical neurodegenerative pathological settings. In conclusion, this study identified potential therapeutic targets to address two key mechanisms of CNS trauma and neurodegeneration: neuronal loss and regenerative failure.</description><identifier>ISSN: 1750-1326</identifier><identifier>EISSN: 1750-1326</identifier><identifier>DOI: 10.1186/1750-1326-9-14</identifier><identifier>PMID: 24767545</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Animals ; Apoptosis ; Apoptosis - genetics ; Bioinformatics ; Biotechnology industry ; Computer software industry ; Disease Models, Animal ; Gene expression ; Gene Expression Regulation - genetics ; Genetic aspects ; Health aspects ; Immunohistochemistry ; Injuries ; Mice ; Mice, Inbred BALB C ; Nerve Crush ; Nerve Degeneration - genetics ; Nerve Regeneration - genetics ; Nervous system ; Neurodegeneration ; Neurodegenerative Diseases - genetics ; Neurodegenerative Diseases - metabolism ; Neurodegenerative Diseases - pathology ; Neurons ; Oligonucleotide Array Sequence Analysis ; Optic nerve ; Optic Nerve - metabolism ; Optic Nerve - pathology ; Optics ; Proteins ; Real-Time Polymerase Chain Reaction ; Retina - metabolism ; Retina - pathology ; Reverse Transcriptase Polymerase Chain Reaction ; Studies ; Survival analysis ; Transcriptome ; Variance analysis</subject><ispartof>Molecular neurodegeneration, 2014-04, Vol.9 (1), p.14-14, Article 14</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>2014 Sharma et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.</rights><rights>Copyright © 2014 Sharma et al.; licensee BioMed Central Ltd. 2014 Sharma et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-7b4be631f861d3cf29c167ef67076accff9ab4f0dc31c1f47ce35a98edf35f393</citedby><cites>FETCH-LOGICAL-c584t-7b4be631f861d3cf29c167ef67076accff9ab4f0dc31c1f47ce35a98edf35f393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113182/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1524005467?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24767545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Tasneem P</creatorcontrib><creatorcontrib>McDowell, Colleen M</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Wagner, Alex H</creatorcontrib><creatorcontrib>Thole, David</creatorcontrib><creatorcontrib>Faga, Benjamin P</creatorcontrib><creatorcontrib>Wordinger, Robert J</creatorcontrib><creatorcontrib>Braun, Terry A</creatorcontrib><creatorcontrib>Clark, Abbot F</creatorcontrib><title>Optic nerve crush induces spatial and temporal gene expression patterns in retina and optic nerve of BALB/cJ mice</title><title>Molecular neurodegeneration</title><addtitle>Mol Neurodegener</addtitle><description>Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of cellular and molecular events resulting in neuronal apoptosis and regenerative failure. The pathogenic mechanisms and gene expression changes associated with these detrimental events can be effectively studied using a rodent optic nerve crush (ONC) model. The purpose of this study was to use a mouse ONC model to: (a) evaluate changes in retina and optic nerve (ON) gene expression, (b) identify neurodegenerative pathogenic pathways and (c) discover potential new therapeutic targets. Only 54% of total neurons survived in the ganglion cell layer (GCL) 28 days post crush. Using Bayesian Estimation of Temporal Regulation (BETR) gene expression analysis, we identified significantly altered expression of 1,723 and 2,110 genes in the retina and ON, respectively. Meta-analysis of altered gene expression (≥1.5, ≤-1.5, p &lt; 0.05) using Partek and DAVID demonstrated 28 up and 20 down-regulated retinal gene clusters and 57 up and 41 down-regulated optic nerve clusters. Regulated gene clusters included regenerative change, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. Expression of selected genes (Vsnl1, Syt1, Synpr and Nrn1) from retinal and ON neuronal clusters were quantitatively and qualitatively examined for their relation to axonal neurodegeneration by immunohistochemistry and qRT-PCR. A number of detrimental gene expression changes occur that contribute to trauma-induced neurodegeneration after injury to ON axons. Nrn1 (synaptic plasticity gene), Synpr and Syt1 (synaptic vesicle fusion genes), and Vsnl1 (neuron differentiation associated gene) were a few of the potentially unique genes identified that were down-regulated spatially and temporally in our rodent ONC model. Bioinformatic meta-analysis identified significant tissue-specific and time-dependent gene clusters associated with regenerative changes, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. These ONC induced neuronal loss and regenerative failure associated clusters can be extrapolated to changes occurring in other forms of CNS trauma or in clinical neurodegenerative pathological settings. In conclusion, this study identified potential therapeutic targets to address two key mechanisms of CNS trauma and neurodegeneration: neuronal loss and regenerative failure.</description><subject>Analysis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>Bioinformatics</subject><subject>Biotechnology industry</subject><subject>Computer software industry</subject><subject>Disease Models, Animal</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Immunohistochemistry</subject><subject>Injuries</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Nerve Crush</subject><subject>Nerve Degeneration - genetics</subject><subject>Nerve Regeneration - genetics</subject><subject>Nervous system</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative Diseases - genetics</subject><subject>Neurodegenerative Diseases - metabolism</subject><subject>Neurodegenerative Diseases - pathology</subject><subject>Neurons</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Optic nerve</subject><subject>Optic Nerve - metabolism</subject><subject>Optic Nerve - pathology</subject><subject>Optics</subject><subject>Proteins</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Retina - metabolism</subject><subject>Retina - pathology</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Studies</subject><subject>Survival analysis</subject><subject>Transcriptome</subject><subject>Variance analysis</subject><issn>1750-1326</issn><issn>1750-1326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNks1vFSEUxSdGY2t169KQuHEzLQxfw8bktana5iXd6JrwmMsrzQxMYabR_16m1udr04VhAVx-9wQOp6reE3xMSCtOiOS4JrQRtaoJe1Ed7gov99YH1ZucbzBmEmP-ujpomBSSM35Y3V6Nk7coQLoDZNOcr5EP3WwhozyayZsemdChCYYxprLZQgAEP8cEOfsYUGEmSCGXLpRg8sHc83FPNTp0ulqfnthLNHgLb6tXzvQZ3j3MR9WPL-ffz77V66uvF2erdW15y6ZabtgGBCWuFaSj1jXKEiHBCYmlMNY6p8yGOdxZSixxTFqg3KgWOke5o4oeVZ__6I7zZoDOQpjKA_SY_GDSLx2N149Pgr_W23inGSGUtE0R-PQgkOLtDHnSg88W-t4EiHPWhNPio2oa9h9ooxRlQomCfnyC3sQ5heLEQrHyP0zIf9TW9KB9cLFc0S6iesUZFhxLhgt1_AxVRgfF6RjA-VJ_rsGmmHMCt7ODYL3kSS-R0UtktNJkediHfRN3-N8A0d98KcT0</recordid><startdate>20140427</startdate><enddate>20140427</enddate><creator>Sharma, Tasneem P</creator><creator>McDowell, Colleen M</creator><creator>Liu, Yang</creator><creator>Wagner, Alex H</creator><creator>Thole, David</creator><creator>Faga, Benjamin P</creator><creator>Wordinger, Robert J</creator><creator>Braun, Terry A</creator><creator>Clark, Abbot F</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140427</creationdate><title>Optic nerve crush induces spatial and temporal gene expression patterns in retina and optic nerve of BALB/cJ mice</title><author>Sharma, Tasneem P ; McDowell, Colleen M ; Liu, Yang ; Wagner, Alex H ; Thole, David ; Faga, Benjamin P ; Wordinger, Robert J ; Braun, Terry A ; Clark, Abbot F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-7b4be631f861d3cf29c167ef67076accff9ab4f0dc31c1f47ce35a98edf35f393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>Bioinformatics</topic><topic>Biotechnology industry</topic><topic>Computer software industry</topic><topic>Disease Models, Animal</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Immunohistochemistry</topic><topic>Injuries</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Nerve Crush</topic><topic>Nerve Degeneration - genetics</topic><topic>Nerve Regeneration - genetics</topic><topic>Nervous system</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative Diseases - genetics</topic><topic>Neurodegenerative Diseases - metabolism</topic><topic>Neurodegenerative Diseases - pathology</topic><topic>Neurons</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Optic nerve</topic><topic>Optic Nerve - metabolism</topic><topic>Optic Nerve - pathology</topic><topic>Optics</topic><topic>Proteins</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Retina - metabolism</topic><topic>Retina - pathology</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Studies</topic><topic>Survival analysis</topic><topic>Transcriptome</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Tasneem P</creatorcontrib><creatorcontrib>McDowell, Colleen M</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Wagner, Alex H</creatorcontrib><creatorcontrib>Thole, David</creatorcontrib><creatorcontrib>Faga, Benjamin P</creatorcontrib><creatorcontrib>Wordinger, Robert J</creatorcontrib><creatorcontrib>Braun, Terry A</creatorcontrib><creatorcontrib>Clark, Abbot F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular neurodegeneration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Tasneem P</au><au>McDowell, Colleen M</au><au>Liu, Yang</au><au>Wagner, Alex H</au><au>Thole, David</au><au>Faga, Benjamin P</au><au>Wordinger, Robert J</au><au>Braun, Terry A</au><au>Clark, Abbot F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optic nerve crush induces spatial and temporal gene expression patterns in retina and optic nerve of BALB/cJ mice</atitle><jtitle>Molecular neurodegeneration</jtitle><addtitle>Mol Neurodegener</addtitle><date>2014-04-27</date><risdate>2014</risdate><volume>9</volume><issue>1</issue><spage>14</spage><epage>14</epage><pages>14-14</pages><artnum>14</artnum><issn>1750-1326</issn><eissn>1750-1326</eissn><abstract>Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of cellular and molecular events resulting in neuronal apoptosis and regenerative failure. The pathogenic mechanisms and gene expression changes associated with these detrimental events can be effectively studied using a rodent optic nerve crush (ONC) model. The purpose of this study was to use a mouse ONC model to: (a) evaluate changes in retina and optic nerve (ON) gene expression, (b) identify neurodegenerative pathogenic pathways and (c) discover potential new therapeutic targets. Only 54% of total neurons survived in the ganglion cell layer (GCL) 28 days post crush. Using Bayesian Estimation of Temporal Regulation (BETR) gene expression analysis, we identified significantly altered expression of 1,723 and 2,110 genes in the retina and ON, respectively. Meta-analysis of altered gene expression (≥1.5, ≤-1.5, p &lt; 0.05) using Partek and DAVID demonstrated 28 up and 20 down-regulated retinal gene clusters and 57 up and 41 down-regulated optic nerve clusters. Regulated gene clusters included regenerative change, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. Expression of selected genes (Vsnl1, Syt1, Synpr and Nrn1) from retinal and ON neuronal clusters were quantitatively and qualitatively examined for their relation to axonal neurodegeneration by immunohistochemistry and qRT-PCR. A number of detrimental gene expression changes occur that contribute to trauma-induced neurodegeneration after injury to ON axons. Nrn1 (synaptic plasticity gene), Synpr and Syt1 (synaptic vesicle fusion genes), and Vsnl1 (neuron differentiation associated gene) were a few of the potentially unique genes identified that were down-regulated spatially and temporally in our rodent ONC model. Bioinformatic meta-analysis identified significant tissue-specific and time-dependent gene clusters associated with regenerative changes, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. These ONC induced neuronal loss and regenerative failure associated clusters can be extrapolated to changes occurring in other forms of CNS trauma or in clinical neurodegenerative pathological settings. In conclusion, this study identified potential therapeutic targets to address two key mechanisms of CNS trauma and neurodegeneration: neuronal loss and regenerative failure.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>24767545</pmid><doi>10.1186/1750-1326-9-14</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1750-1326
ispartof Molecular neurodegeneration, 2014-04, Vol.9 (1), p.14-14, Article 14
issn 1750-1326
1750-1326
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4113182
source Publicly Available Content Database; PubMed; Free Full-Text Journals in Chemistry
subjects Analysis
Animals
Apoptosis
Apoptosis - genetics
Bioinformatics
Biotechnology industry
Computer software industry
Disease Models, Animal
Gene expression
Gene Expression Regulation - genetics
Genetic aspects
Health aspects
Immunohistochemistry
Injuries
Mice
Mice, Inbred BALB C
Nerve Crush
Nerve Degeneration - genetics
Nerve Regeneration - genetics
Nervous system
Neurodegeneration
Neurodegenerative Diseases - genetics
Neurodegenerative Diseases - metabolism
Neurodegenerative Diseases - pathology
Neurons
Oligonucleotide Array Sequence Analysis
Optic nerve
Optic Nerve - metabolism
Optic Nerve - pathology
Optics
Proteins
Real-Time Polymerase Chain Reaction
Retina - metabolism
Retina - pathology
Reverse Transcriptase Polymerase Chain Reaction
Studies
Survival analysis
Transcriptome
Variance analysis
title Optic nerve crush induces spatial and temporal gene expression patterns in retina and optic nerve of BALB/cJ mice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optic%20nerve%20crush%20induces%20spatial%20and%20temporal%20gene%20expression%20patterns%20in%20retina%20and%20optic%20nerve%20of%20BALB/cJ%20mice&rft.jtitle=Molecular%20neurodegeneration&rft.au=Sharma,%20Tasneem%20P&rft.date=2014-04-27&rft.volume=9&rft.issue=1&rft.spage=14&rft.epage=14&rft.pages=14-14&rft.artnum=14&rft.issn=1750-1326&rft.eissn=1750-1326&rft_id=info:doi/10.1186/1750-1326-9-14&rft_dat=%3Cgale_pubme%3EA540650740%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c584t-7b4be631f861d3cf29c167ef67076accff9ab4f0dc31c1f47ce35a98edf35f393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1524005467&rft_id=info:pmid/24767545&rft_galeid=A540650740&rfr_iscdi=true