Loading…
Integrated RNA and DNA sequencing improves mutation detection in low purity tumors
Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed...
Saved in:
Published in: | Nucleic acids research 2014-07, Vol.42 (13), p.e107-e107 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c477t-63818bee0eabbed1e49342f118733488c90324b7038a4d9a067b5025474409ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c477t-63818bee0eabbed1e49342f118733488c90324b7038a4d9a067b5025474409ea3 |
container_end_page | e107 |
container_issue | 13 |
container_start_page | e107 |
container_title | Nucleic acids research |
container_volume | 42 |
creator | Wilkerson, Matthew D Cabanski, Christopher R Sun, Wei Hoadley, Katherine A Walter, Vonn Mose, Lisle E Troester, Melissa A Hammerman, Peter S Parker, Joel S Perou, Charles M Hayes, D Neil |
description | Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed exome with depth proportional to expression. We hypothesized that integrating DNA-WES and RNA-seq would enable superior mutation detection versus DNA-WES alone. We developed a first-of-its-kind method, called UNCeqR, that detects somatic mutations by integrating patient-matched RNA-seq and DNA-WES. In simulation, the integrated DNA and RNA model outperformed the DNA-WES only model. Validation by patient-matched whole genome sequencing demonstrated superior performance of the integrated model over DNA-WES only models, including a published method and published mutation profiles. Genome-wide mutational analysis of breast and lung cancer cohorts (n = 871) revealed remarkable tumor genomics properties. Low purity tumors experienced the largest gains in mutation detection by integrating RNA-seq and DNA-WES. RNA provided greater mutation signal than DNA in expressed mutations. Compared to earlier studies on this cohort, UNCeqR increased mutation rates of driver and therapeutically targeted genes (e.g. PIK3CA, ERBB2 and FGFR2). In summary, integrating RNA-seq with DNA-WES increases mutation detection performance, especially for low purity tumors. |
doi_str_mv | 10.1093/nar/gku489 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4117748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551027716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-63818bee0eabbed1e49342f118733488c90324b7038a4d9a067b5025474409ea3</originalsourceid><addsrcrecordid>eNqFkdFqFTEQhoMo9rT1pg9QcinC2slmdpPcCKVaLRSFUq9DdnfOaepuckyylb69255a9Mqrf2A-fmb4GDsS8F6AkSfBpZPNjxm1ecFWQrZ1haatX7IVSGgqAaj32H7OtwACRYOv2V6NRoFu1YpdXYRCm-QKDfzq6yl3YeAfl8z0c6bQ-7DhftqmeEeZT3NxxcfAByrUP04-8DH-4ts5-XLPyzzFlA_Zq7UbM715ygP2_fzT9dmX6vLb54uz08uqR6VK1UotdEcE5LqOBkFoJNZrIbSSErXuDcgaOwVSOxyMg1Z1DdQNKkQw5OQB-7Dr3c7dRENPoSQ32m3yk0v3Njpv_90Ef2M38c6iEEqhXgrePhWkuHybi5187mkcXaA4Zys0aAVta5r_o00joFZKtAv6bof2KeacaP18kQD74MsuvuzO1wIf__3DM_pHkPwNy_2SJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551027716</pqid></control><display><type>article</type><title>Integrated RNA and DNA sequencing improves mutation detection in low purity tumors</title><source>PubMed (Medline)</source><source>Oxford Journals Open Access Collection</source><creator>Wilkerson, Matthew D ; Cabanski, Christopher R ; Sun, Wei ; Hoadley, Katherine A ; Walter, Vonn ; Mose, Lisle E ; Troester, Melissa A ; Hammerman, Peter S ; Parker, Joel S ; Perou, Charles M ; Hayes, D Neil</creator><creatorcontrib>Wilkerson, Matthew D ; Cabanski, Christopher R ; Sun, Wei ; Hoadley, Katherine A ; Walter, Vonn ; Mose, Lisle E ; Troester, Melissa A ; Hammerman, Peter S ; Parker, Joel S ; Perou, Charles M ; Hayes, D Neil</creatorcontrib><description>Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed exome with depth proportional to expression. We hypothesized that integrating DNA-WES and RNA-seq would enable superior mutation detection versus DNA-WES alone. We developed a first-of-its-kind method, called UNCeqR, that detects somatic mutations by integrating patient-matched RNA-seq and DNA-WES. In simulation, the integrated DNA and RNA model outperformed the DNA-WES only model. Validation by patient-matched whole genome sequencing demonstrated superior performance of the integrated model over DNA-WES only models, including a published method and published mutation profiles. Genome-wide mutational analysis of breast and lung cancer cohorts (n = 871) revealed remarkable tumor genomics properties. Low purity tumors experienced the largest gains in mutation detection by integrating RNA-seq and DNA-WES. RNA provided greater mutation signal than DNA in expressed mutations. Compared to earlier studies on this cohort, UNCeqR increased mutation rates of driver and therapeutically targeted genes (e.g. PIK3CA, ERBB2 and FGFR2). In summary, integrating RNA-seq with DNA-WES increases mutation detection performance, especially for low purity tumors.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gku489</identifier><identifier>PMID: 24970867</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Breast Neoplasms - genetics ; DNA Mutational Analysis - methods ; Female ; Genes, Neoplasm ; Humans ; Lung Neoplasms - genetics ; Methods Online ; Mutation Rate ; Neoplasms - genetics ; Sequence Analysis, RNA - methods</subject><ispartof>Nucleic acids research, 2014-07, Vol.42 (13), p.e107-e107</ispartof><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-63818bee0eabbed1e49342f118733488c90324b7038a4d9a067b5025474409ea3</citedby><cites>FETCH-LOGICAL-c477t-63818bee0eabbed1e49342f118733488c90324b7038a4d9a067b5025474409ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117748/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117748/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24970867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilkerson, Matthew D</creatorcontrib><creatorcontrib>Cabanski, Christopher R</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Hoadley, Katherine A</creatorcontrib><creatorcontrib>Walter, Vonn</creatorcontrib><creatorcontrib>Mose, Lisle E</creatorcontrib><creatorcontrib>Troester, Melissa A</creatorcontrib><creatorcontrib>Hammerman, Peter S</creatorcontrib><creatorcontrib>Parker, Joel S</creatorcontrib><creatorcontrib>Perou, Charles M</creatorcontrib><creatorcontrib>Hayes, D Neil</creatorcontrib><title>Integrated RNA and DNA sequencing improves mutation detection in low purity tumors</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed exome with depth proportional to expression. We hypothesized that integrating DNA-WES and RNA-seq would enable superior mutation detection versus DNA-WES alone. We developed a first-of-its-kind method, called UNCeqR, that detects somatic mutations by integrating patient-matched RNA-seq and DNA-WES. In simulation, the integrated DNA and RNA model outperformed the DNA-WES only model. Validation by patient-matched whole genome sequencing demonstrated superior performance of the integrated model over DNA-WES only models, including a published method and published mutation profiles. Genome-wide mutational analysis of breast and lung cancer cohorts (n = 871) revealed remarkable tumor genomics properties. Low purity tumors experienced the largest gains in mutation detection by integrating RNA-seq and DNA-WES. RNA provided greater mutation signal than DNA in expressed mutations. Compared to earlier studies on this cohort, UNCeqR increased mutation rates of driver and therapeutically targeted genes (e.g. PIK3CA, ERBB2 and FGFR2). In summary, integrating RNA-seq with DNA-WES increases mutation detection performance, especially for low purity tumors.</description><subject>Breast Neoplasms - genetics</subject><subject>DNA Mutational Analysis - methods</subject><subject>Female</subject><subject>Genes, Neoplasm</subject><subject>Humans</subject><subject>Lung Neoplasms - genetics</subject><subject>Methods Online</subject><subject>Mutation Rate</subject><subject>Neoplasms - genetics</subject><subject>Sequence Analysis, RNA - methods</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkdFqFTEQhoMo9rT1pg9QcinC2slmdpPcCKVaLRSFUq9DdnfOaepuckyylb69255a9Mqrf2A-fmb4GDsS8F6AkSfBpZPNjxm1ecFWQrZ1haatX7IVSGgqAaj32H7OtwACRYOv2V6NRoFu1YpdXYRCm-QKDfzq6yl3YeAfl8z0c6bQ-7DhftqmeEeZT3NxxcfAByrUP04-8DH-4ts5-XLPyzzFlA_Zq7UbM715ygP2_fzT9dmX6vLb54uz08uqR6VK1UotdEcE5LqOBkFoJNZrIbSSErXuDcgaOwVSOxyMg1Z1DdQNKkQw5OQB-7Dr3c7dRENPoSQ32m3yk0v3Njpv_90Ef2M38c6iEEqhXgrePhWkuHybi5187mkcXaA4Zys0aAVta5r_o00joFZKtAv6bof2KeacaP18kQD74MsuvuzO1wIf__3DM_pHkPwNy_2SJA</recordid><startdate>20140729</startdate><enddate>20140729</enddate><creator>Wilkerson, Matthew D</creator><creator>Cabanski, Christopher R</creator><creator>Sun, Wei</creator><creator>Hoadley, Katherine A</creator><creator>Walter, Vonn</creator><creator>Mose, Lisle E</creator><creator>Troester, Melissa A</creator><creator>Hammerman, Peter S</creator><creator>Parker, Joel S</creator><creator>Perou, Charles M</creator><creator>Hayes, D Neil</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20140729</creationdate><title>Integrated RNA and DNA sequencing improves mutation detection in low purity tumors</title><author>Wilkerson, Matthew D ; Cabanski, Christopher R ; Sun, Wei ; Hoadley, Katherine A ; Walter, Vonn ; Mose, Lisle E ; Troester, Melissa A ; Hammerman, Peter S ; Parker, Joel S ; Perou, Charles M ; Hayes, D Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-63818bee0eabbed1e49342f118733488c90324b7038a4d9a067b5025474409ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Breast Neoplasms - genetics</topic><topic>DNA Mutational Analysis - methods</topic><topic>Female</topic><topic>Genes, Neoplasm</topic><topic>Humans</topic><topic>Lung Neoplasms - genetics</topic><topic>Methods Online</topic><topic>Mutation Rate</topic><topic>Neoplasms - genetics</topic><topic>Sequence Analysis, RNA - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilkerson, Matthew D</creatorcontrib><creatorcontrib>Cabanski, Christopher R</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Hoadley, Katherine A</creatorcontrib><creatorcontrib>Walter, Vonn</creatorcontrib><creatorcontrib>Mose, Lisle E</creatorcontrib><creatorcontrib>Troester, Melissa A</creatorcontrib><creatorcontrib>Hammerman, Peter S</creatorcontrib><creatorcontrib>Parker, Joel S</creatorcontrib><creatorcontrib>Perou, Charles M</creatorcontrib><creatorcontrib>Hayes, D Neil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilkerson, Matthew D</au><au>Cabanski, Christopher R</au><au>Sun, Wei</au><au>Hoadley, Katherine A</au><au>Walter, Vonn</au><au>Mose, Lisle E</au><au>Troester, Melissa A</au><au>Hammerman, Peter S</au><au>Parker, Joel S</au><au>Perou, Charles M</au><au>Hayes, D Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated RNA and DNA sequencing improves mutation detection in low purity tumors</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2014-07-29</date><risdate>2014</risdate><volume>42</volume><issue>13</issue><spage>e107</spage><epage>e107</epage><pages>e107-e107</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed exome with depth proportional to expression. We hypothesized that integrating DNA-WES and RNA-seq would enable superior mutation detection versus DNA-WES alone. We developed a first-of-its-kind method, called UNCeqR, that detects somatic mutations by integrating patient-matched RNA-seq and DNA-WES. In simulation, the integrated DNA and RNA model outperformed the DNA-WES only model. Validation by patient-matched whole genome sequencing demonstrated superior performance of the integrated model over DNA-WES only models, including a published method and published mutation profiles. Genome-wide mutational analysis of breast and lung cancer cohorts (n = 871) revealed remarkable tumor genomics properties. Low purity tumors experienced the largest gains in mutation detection by integrating RNA-seq and DNA-WES. RNA provided greater mutation signal than DNA in expressed mutations. Compared to earlier studies on this cohort, UNCeqR increased mutation rates of driver and therapeutically targeted genes (e.g. PIK3CA, ERBB2 and FGFR2). In summary, integrating RNA-seq with DNA-WES increases mutation detection performance, especially for low purity tumors.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>24970867</pmid><doi>10.1093/nar/gku489</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2014-07, Vol.42 (13), p.e107-e107 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4117748 |
source | PubMed (Medline); Oxford Journals Open Access Collection |
subjects | Breast Neoplasms - genetics DNA Mutational Analysis - methods Female Genes, Neoplasm Humans Lung Neoplasms - genetics Methods Online Mutation Rate Neoplasms - genetics Sequence Analysis, RNA - methods |
title | Integrated RNA and DNA sequencing improves mutation detection in low purity tumors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20RNA%20and%20DNA%20sequencing%20improves%20mutation%20detection%20in%20low%20purity%20tumors&rft.jtitle=Nucleic%20acids%20research&rft.au=Wilkerson,%20Matthew%20D&rft.date=2014-07-29&rft.volume=42&rft.issue=13&rft.spage=e107&rft.epage=e107&rft.pages=e107-e107&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gku489&rft_dat=%3Cproquest_pubme%3E1551027716%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-63818bee0eabbed1e49342f118733488c90324b7038a4d9a067b5025474409ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551027716&rft_id=info:pmid/24970867&rfr_iscdi=true |