Loading…

Integrated RNA and DNA sequencing improves mutation detection in low purity tumors

Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2014-07, Vol.42 (13), p.e107-e107
Main Authors: Wilkerson, Matthew D, Cabanski, Christopher R, Sun, Wei, Hoadley, Katherine A, Walter, Vonn, Mose, Lisle E, Troester, Melissa A, Hammerman, Peter S, Parker, Joel S, Perou, Charles M, Hayes, D Neil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-63818bee0eabbed1e49342f118733488c90324b7038a4d9a067b5025474409ea3
cites cdi_FETCH-LOGICAL-c477t-63818bee0eabbed1e49342f118733488c90324b7038a4d9a067b5025474409ea3
container_end_page e107
container_issue 13
container_start_page e107
container_title Nucleic acids research
container_volume 42
creator Wilkerson, Matthew D
Cabanski, Christopher R
Sun, Wei
Hoadley, Katherine A
Walter, Vonn
Mose, Lisle E
Troester, Melissa A
Hammerman, Peter S
Parker, Joel S
Perou, Charles M
Hayes, D Neil
description Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed exome with depth proportional to expression. We hypothesized that integrating DNA-WES and RNA-seq would enable superior mutation detection versus DNA-WES alone. We developed a first-of-its-kind method, called UNCeqR, that detects somatic mutations by integrating patient-matched RNA-seq and DNA-WES. In simulation, the integrated DNA and RNA model outperformed the DNA-WES only model. Validation by patient-matched whole genome sequencing demonstrated superior performance of the integrated model over DNA-WES only models, including a published method and published mutation profiles. Genome-wide mutational analysis of breast and lung cancer cohorts (n = 871) revealed remarkable tumor genomics properties. Low purity tumors experienced the largest gains in mutation detection by integrating RNA-seq and DNA-WES. RNA provided greater mutation signal than DNA in expressed mutations. Compared to earlier studies on this cohort, UNCeqR increased mutation rates of driver and therapeutically targeted genes (e.g. PIK3CA, ERBB2 and FGFR2). In summary, integrating RNA-seq with DNA-WES increases mutation detection performance, especially for low purity tumors.
doi_str_mv 10.1093/nar/gku489
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4117748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551027716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-63818bee0eabbed1e49342f118733488c90324b7038a4d9a067b5025474409ea3</originalsourceid><addsrcrecordid>eNqFkdFqFTEQhoMo9rT1pg9QcinC2slmdpPcCKVaLRSFUq9DdnfOaepuckyylb69255a9Mqrf2A-fmb4GDsS8F6AkSfBpZPNjxm1ecFWQrZ1haatX7IVSGgqAaj32H7OtwACRYOv2V6NRoFu1YpdXYRCm-QKDfzq6yl3YeAfl8z0c6bQ-7DhftqmeEeZT3NxxcfAByrUP04-8DH-4ts5-XLPyzzFlA_Zq7UbM715ygP2_fzT9dmX6vLb54uz08uqR6VK1UotdEcE5LqOBkFoJNZrIbSSErXuDcgaOwVSOxyMg1Z1DdQNKkQw5OQB-7Dr3c7dRENPoSQ32m3yk0v3Njpv_90Ef2M38c6iEEqhXgrePhWkuHybi5187mkcXaA4Zys0aAVta5r_o00joFZKtAv6bof2KeacaP18kQD74MsuvuzO1wIf__3DM_pHkPwNy_2SJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551027716</pqid></control><display><type>article</type><title>Integrated RNA and DNA sequencing improves mutation detection in low purity tumors</title><source>PubMed (Medline)</source><source>Oxford Journals Open Access Collection</source><creator>Wilkerson, Matthew D ; Cabanski, Christopher R ; Sun, Wei ; Hoadley, Katherine A ; Walter, Vonn ; Mose, Lisle E ; Troester, Melissa A ; Hammerman, Peter S ; Parker, Joel S ; Perou, Charles M ; Hayes, D Neil</creator><creatorcontrib>Wilkerson, Matthew D ; Cabanski, Christopher R ; Sun, Wei ; Hoadley, Katherine A ; Walter, Vonn ; Mose, Lisle E ; Troester, Melissa A ; Hammerman, Peter S ; Parker, Joel S ; Perou, Charles M ; Hayes, D Neil</creatorcontrib><description>Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed exome with depth proportional to expression. We hypothesized that integrating DNA-WES and RNA-seq would enable superior mutation detection versus DNA-WES alone. We developed a first-of-its-kind method, called UNCeqR, that detects somatic mutations by integrating patient-matched RNA-seq and DNA-WES. In simulation, the integrated DNA and RNA model outperformed the DNA-WES only model. Validation by patient-matched whole genome sequencing demonstrated superior performance of the integrated model over DNA-WES only models, including a published method and published mutation profiles. Genome-wide mutational analysis of breast and lung cancer cohorts (n = 871) revealed remarkable tumor genomics properties. Low purity tumors experienced the largest gains in mutation detection by integrating RNA-seq and DNA-WES. RNA provided greater mutation signal than DNA in expressed mutations. Compared to earlier studies on this cohort, UNCeqR increased mutation rates of driver and therapeutically targeted genes (e.g. PIK3CA, ERBB2 and FGFR2). In summary, integrating RNA-seq with DNA-WES increases mutation detection performance, especially for low purity tumors.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gku489</identifier><identifier>PMID: 24970867</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Breast Neoplasms - genetics ; DNA Mutational Analysis - methods ; Female ; Genes, Neoplasm ; Humans ; Lung Neoplasms - genetics ; Methods Online ; Mutation Rate ; Neoplasms - genetics ; Sequence Analysis, RNA - methods</subject><ispartof>Nucleic acids research, 2014-07, Vol.42 (13), p.e107-e107</ispartof><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-63818bee0eabbed1e49342f118733488c90324b7038a4d9a067b5025474409ea3</citedby><cites>FETCH-LOGICAL-c477t-63818bee0eabbed1e49342f118733488c90324b7038a4d9a067b5025474409ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117748/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117748/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24970867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilkerson, Matthew D</creatorcontrib><creatorcontrib>Cabanski, Christopher R</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Hoadley, Katherine A</creatorcontrib><creatorcontrib>Walter, Vonn</creatorcontrib><creatorcontrib>Mose, Lisle E</creatorcontrib><creatorcontrib>Troester, Melissa A</creatorcontrib><creatorcontrib>Hammerman, Peter S</creatorcontrib><creatorcontrib>Parker, Joel S</creatorcontrib><creatorcontrib>Perou, Charles M</creatorcontrib><creatorcontrib>Hayes, D Neil</creatorcontrib><title>Integrated RNA and DNA sequencing improves mutation detection in low purity tumors</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed exome with depth proportional to expression. We hypothesized that integrating DNA-WES and RNA-seq would enable superior mutation detection versus DNA-WES alone. We developed a first-of-its-kind method, called UNCeqR, that detects somatic mutations by integrating patient-matched RNA-seq and DNA-WES. In simulation, the integrated DNA and RNA model outperformed the DNA-WES only model. Validation by patient-matched whole genome sequencing demonstrated superior performance of the integrated model over DNA-WES only models, including a published method and published mutation profiles. Genome-wide mutational analysis of breast and lung cancer cohorts (n = 871) revealed remarkable tumor genomics properties. Low purity tumors experienced the largest gains in mutation detection by integrating RNA-seq and DNA-WES. RNA provided greater mutation signal than DNA in expressed mutations. Compared to earlier studies on this cohort, UNCeqR increased mutation rates of driver and therapeutically targeted genes (e.g. PIK3CA, ERBB2 and FGFR2). In summary, integrating RNA-seq with DNA-WES increases mutation detection performance, especially for low purity tumors.</description><subject>Breast Neoplasms - genetics</subject><subject>DNA Mutational Analysis - methods</subject><subject>Female</subject><subject>Genes, Neoplasm</subject><subject>Humans</subject><subject>Lung Neoplasms - genetics</subject><subject>Methods Online</subject><subject>Mutation Rate</subject><subject>Neoplasms - genetics</subject><subject>Sequence Analysis, RNA - methods</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkdFqFTEQhoMo9rT1pg9QcinC2slmdpPcCKVaLRSFUq9DdnfOaepuckyylb69255a9Mqrf2A-fmb4GDsS8F6AkSfBpZPNjxm1ecFWQrZ1haatX7IVSGgqAaj32H7OtwACRYOv2V6NRoFu1YpdXYRCm-QKDfzq6yl3YeAfl8z0c6bQ-7DhftqmeEeZT3NxxcfAByrUP04-8DH-4ts5-XLPyzzFlA_Zq7UbM715ygP2_fzT9dmX6vLb54uz08uqR6VK1UotdEcE5LqOBkFoJNZrIbSSErXuDcgaOwVSOxyMg1Z1DdQNKkQw5OQB-7Dr3c7dRENPoSQ32m3yk0v3Njpv_90Ef2M38c6iEEqhXgrePhWkuHybi5187mkcXaA4Zys0aAVta5r_o00joFZKtAv6bof2KeacaP18kQD74MsuvuzO1wIf__3DM_pHkPwNy_2SJA</recordid><startdate>20140729</startdate><enddate>20140729</enddate><creator>Wilkerson, Matthew D</creator><creator>Cabanski, Christopher R</creator><creator>Sun, Wei</creator><creator>Hoadley, Katherine A</creator><creator>Walter, Vonn</creator><creator>Mose, Lisle E</creator><creator>Troester, Melissa A</creator><creator>Hammerman, Peter S</creator><creator>Parker, Joel S</creator><creator>Perou, Charles M</creator><creator>Hayes, D Neil</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20140729</creationdate><title>Integrated RNA and DNA sequencing improves mutation detection in low purity tumors</title><author>Wilkerson, Matthew D ; Cabanski, Christopher R ; Sun, Wei ; Hoadley, Katherine A ; Walter, Vonn ; Mose, Lisle E ; Troester, Melissa A ; Hammerman, Peter S ; Parker, Joel S ; Perou, Charles M ; Hayes, D Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-63818bee0eabbed1e49342f118733488c90324b7038a4d9a067b5025474409ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Breast Neoplasms - genetics</topic><topic>DNA Mutational Analysis - methods</topic><topic>Female</topic><topic>Genes, Neoplasm</topic><topic>Humans</topic><topic>Lung Neoplasms - genetics</topic><topic>Methods Online</topic><topic>Mutation Rate</topic><topic>Neoplasms - genetics</topic><topic>Sequence Analysis, RNA - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilkerson, Matthew D</creatorcontrib><creatorcontrib>Cabanski, Christopher R</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Hoadley, Katherine A</creatorcontrib><creatorcontrib>Walter, Vonn</creatorcontrib><creatorcontrib>Mose, Lisle E</creatorcontrib><creatorcontrib>Troester, Melissa A</creatorcontrib><creatorcontrib>Hammerman, Peter S</creatorcontrib><creatorcontrib>Parker, Joel S</creatorcontrib><creatorcontrib>Perou, Charles M</creatorcontrib><creatorcontrib>Hayes, D Neil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilkerson, Matthew D</au><au>Cabanski, Christopher R</au><au>Sun, Wei</au><au>Hoadley, Katherine A</au><au>Walter, Vonn</au><au>Mose, Lisle E</au><au>Troester, Melissa A</au><au>Hammerman, Peter S</au><au>Parker, Joel S</au><au>Perou, Charles M</au><au>Hayes, D Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated RNA and DNA sequencing improves mutation detection in low purity tumors</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2014-07-29</date><risdate>2014</risdate><volume>42</volume><issue>13</issue><spage>e107</spage><epage>e107</epage><pages>e107-e107</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed exome with depth proportional to expression. We hypothesized that integrating DNA-WES and RNA-seq would enable superior mutation detection versus DNA-WES alone. We developed a first-of-its-kind method, called UNCeqR, that detects somatic mutations by integrating patient-matched RNA-seq and DNA-WES. In simulation, the integrated DNA and RNA model outperformed the DNA-WES only model. Validation by patient-matched whole genome sequencing demonstrated superior performance of the integrated model over DNA-WES only models, including a published method and published mutation profiles. Genome-wide mutational analysis of breast and lung cancer cohorts (n = 871) revealed remarkable tumor genomics properties. Low purity tumors experienced the largest gains in mutation detection by integrating RNA-seq and DNA-WES. RNA provided greater mutation signal than DNA in expressed mutations. Compared to earlier studies on this cohort, UNCeqR increased mutation rates of driver and therapeutically targeted genes (e.g. PIK3CA, ERBB2 and FGFR2). In summary, integrating RNA-seq with DNA-WES increases mutation detection performance, especially for low purity tumors.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>24970867</pmid><doi>10.1093/nar/gku489</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2014-07, Vol.42 (13), p.e107-e107
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4117748
source PubMed (Medline); Oxford Journals Open Access Collection
subjects Breast Neoplasms - genetics
DNA Mutational Analysis - methods
Female
Genes, Neoplasm
Humans
Lung Neoplasms - genetics
Methods Online
Mutation Rate
Neoplasms - genetics
Sequence Analysis, RNA - methods
title Integrated RNA and DNA sequencing improves mutation detection in low purity tumors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20RNA%20and%20DNA%20sequencing%20improves%20mutation%20detection%20in%20low%20purity%20tumors&rft.jtitle=Nucleic%20acids%20research&rft.au=Wilkerson,%20Matthew%20D&rft.date=2014-07-29&rft.volume=42&rft.issue=13&rft.spage=e107&rft.epage=e107&rft.pages=e107-e107&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gku489&rft_dat=%3Cproquest_pubme%3E1551027716%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-63818bee0eabbed1e49342f118733488c90324b7038a4d9a067b5025474409ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551027716&rft_id=info:pmid/24970867&rfr_iscdi=true