Loading…
Cholinergic basal forebrain atrophy predicts amyloid burden in Alzheimer's disease
Abstract We compared accuracy of hippocampus and basal forebrain cholinergic system (BFCS) atrophy to predict cortical amyloid burden in 179 cognitively normal subjects (CN), 269 subjects with early stages of mild cognitive impairment (MCI), 136 subjects with late stages of MCI, and 86 subjects with...
Saved in:
Published in: | Neurobiology of aging 2014-03, Vol.35 (3), p.482-491 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract We compared accuracy of hippocampus and basal forebrain cholinergic system (BFCS) atrophy to predict cortical amyloid burden in 179 cognitively normal subjects (CN), 269 subjects with early stages of mild cognitive impairment (MCI), 136 subjects with late stages of MCI, and 86 subjects with Alzheimer's disease (AD) dementia retrieved from the Alzheimer's Disease Neuroimaging Initiative database. Hippocampus and BFCS volumes were determined from structural magnetic resonance imaging scans at 3 Tesla, and cortical amyloid load from AV45 (florbetapir) positron emission tomography scans. In receiver operating characteristics analyses, BFCS volume provided significantly more accurate classification into amyloid-negative and -positive categories than hippocampus volume. In contrast, hippocampus volume more accurately identified the diagnostic categories of AD, late and early MCI, and CN compared with whole and anterior BFCS volume, whereas posterior BFCS and hippocampus volumes yielded similar diagnostic accuracy. In logistic regression analysis, hippocampus and posterior BFCS volumes contributed significantly to discriminate MCI and AD from CN, but only BFCS volume predicted amyloid status. Our findings suggest that BFCS atrophy is more closely associated with cortical amyloid burden than hippocampus atrophy in predementia AD. |
---|---|
ISSN: | 0197-4580 1558-1497 |
DOI: | 10.1016/j.neurobiolaging.2013.09.029 |