Loading…

Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor

Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale research letters 2014-07, Vol.9 (1), p.371-371, Article 371
Main Authors: Kiani, Mohammad Javad, Harun, Fauzan Khairi Che, Ahmadi, Mohammad Taghi, Rahmani, Meisam, Saeidmanesh, Mahdi, Zare, Moslem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b493t-44df3d65d73ee0c5518c2f23f8a21c686afa2f092c0aa8e25935c7946f9ee0543
cites cdi_FETCH-LOGICAL-b493t-44df3d65d73ee0c5518c2f23f8a21c686afa2f092c0aa8e25935c7946f9ee0543
container_end_page 371
container_issue 1
container_start_page 371
container_title Nanoscale research letters
container_volume 9
creator Kiani, Mohammad Javad
Harun, Fauzan Khairi Che
Ahmadi, Mohammad Taghi
Rahmani, Meisam
Saeidmanesh, Mahdi
Zare, Moslem
description Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET). In this paper, a monolayer graphene-based GFET with a focus on the conductance variation caused by membrane electric charges and thickness is studied. Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane. The electric charge and thickness of the lipid bilayer ( Q LP and L LP ) as a function of carrier density are proposed, and the control parameters are defined. Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement.
doi_str_mv 10.1186/1556-276X-9-371
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4125348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1553105466</sourcerecordid><originalsourceid>FETCH-LOGICAL-b493t-44df3d65d73ee0c5518c2f23f8a21c686afa2f092c0aa8e25935c7946f9ee0543</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhhtR3HX17E1y9BI33919EXTwCxa8KHgLmaTSkyWdjEn3wvx7M8w6uOCeElIPT6re6rrXlLyjdFDXVEqFWa9-4RHznj7pLs8vT9t95BT3sucX3YtabwkRPenV8-6CSUqFkuNlt9vk5Fa7mGQBzdmt0SwhJ5Q9sjtTJnAohn1waBuiOUBBaw1pQhDBLiXHwwJ4MkujpmL2O0iAfYDoEHjfCLQUk2qoSy4vu2fexAqv7s-r7ufnTz82X_HN9y_fNh9u8FaMfMFCOM-dkq7nAMRKSQfLPON-MIxaNSjjDfNkZJYYMwCTI5e2H4XyY-Ol4Ffd-5N3v25ncBZS6yHqfQmzKQedTdAPKyns9JTvtKBMcjE0wceTYBvyI4KHFZtnfUxdH1PXo257aJK3912U_HuFuug5VAsxmgR5rUee09auUg29PqG25FoL-PNXlOjjkv8jf_PviGf-71YbQE5AbaU0QdG3eS2pxf6o8w-g67Xa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553105466</pqid></control><display><type>article</type><title>Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><source>PubMed Central</source><creator>Kiani, Mohammad Javad ; Harun, Fauzan Khairi Che ; Ahmadi, Mohammad Taghi ; Rahmani, Meisam ; Saeidmanesh, Mahdi ; Zare, Moslem</creator><creatorcontrib>Kiani, Mohammad Javad ; Harun, Fauzan Khairi Che ; Ahmadi, Mohammad Taghi ; Rahmani, Meisam ; Saeidmanesh, Mahdi ; Zare, Moslem</creatorcontrib><description>Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET). In this paper, a monolayer graphene-based GFET with a focus on the conductance variation caused by membrane electric charges and thickness is studied. Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane. The electric charge and thickness of the lipid bilayer ( Q LP and L LP ) as a function of carrier density are proposed, and the control parameters are defined. Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement.</description><identifier>ISSN: 1931-7573</identifier><identifier>ISSN: 1556-276X</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/1556-276X-9-371</identifier><identifier>PMID: 25114659</identifier><language>eng</language><publisher>New York: Springer New York</publisher><subject>Chemistry and Materials Science ; Materials Science ; Molecular Medicine ; Nano Idea ; Nanochemistry ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering</subject><ispartof>Nanoscale research letters, 2014-07, Vol.9 (1), p.371-371, Article 371</ispartof><rights>Kiani et al.; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.</rights><rights>Copyright © 2014 Kiani et al.; licensee Springer. 2014 Kiani et al.; licensee Springer.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b493t-44df3d65d73ee0c5518c2f23f8a21c686afa2f092c0aa8e25935c7946f9ee0543</citedby><cites>FETCH-LOGICAL-b493t-44df3d65d73ee0c5518c2f23f8a21c686afa2f092c0aa8e25935c7946f9ee0543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125348/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125348/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25114659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiani, Mohammad Javad</creatorcontrib><creatorcontrib>Harun, Fauzan Khairi Che</creatorcontrib><creatorcontrib>Ahmadi, Mohammad Taghi</creatorcontrib><creatorcontrib>Rahmani, Meisam</creatorcontrib><creatorcontrib>Saeidmanesh, Mahdi</creatorcontrib><creatorcontrib>Zare, Moslem</creatorcontrib><title>Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><addtitle>Nanoscale Res Lett</addtitle><description>Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET). In this paper, a monolayer graphene-based GFET with a focus on the conductance variation caused by membrane electric charges and thickness is studied. Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane. The electric charge and thickness of the lipid bilayer ( Q LP and L LP ) as a function of carrier density are proposed, and the control parameters are defined. Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement.</description><subject>Chemistry and Materials Science</subject><subject>Materials Science</subject><subject>Molecular Medicine</subject><subject>Nano Idea</subject><subject>Nanochemistry</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><issn>1931-7573</issn><issn>1556-276X</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kU2LFDEQhhtR3HX17E1y9BI33919EXTwCxa8KHgLmaTSkyWdjEn3wvx7M8w6uOCeElIPT6re6rrXlLyjdFDXVEqFWa9-4RHznj7pLs8vT9t95BT3sucX3YtabwkRPenV8-6CSUqFkuNlt9vk5Fa7mGQBzdmt0SwhJ5Q9sjtTJnAohn1waBuiOUBBaw1pQhDBLiXHwwJ4MkujpmL2O0iAfYDoEHjfCLQUk2qoSy4vu2fexAqv7s-r7ufnTz82X_HN9y_fNh9u8FaMfMFCOM-dkq7nAMRKSQfLPON-MIxaNSjjDfNkZJYYMwCTI5e2H4XyY-Ol4Ffd-5N3v25ncBZS6yHqfQmzKQedTdAPKyns9JTvtKBMcjE0wceTYBvyI4KHFZtnfUxdH1PXo257aJK3912U_HuFuug5VAsxmgR5rUee09auUg29PqG25FoL-PNXlOjjkv8jf_PviGf-71YbQE5AbaU0QdG3eS2pxf6o8w-g67Xa</recordid><startdate>20140730</startdate><enddate>20140730</enddate><creator>Kiani, Mohammad Javad</creator><creator>Harun, Fauzan Khairi Che</creator><creator>Ahmadi, Mohammad Taghi</creator><creator>Rahmani, Meisam</creator><creator>Saeidmanesh, Mahdi</creator><creator>Zare, Moslem</creator><general>Springer New York</general><general>BioMed Central Ltd</general><general>Springer</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140730</creationdate><title>Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor</title><author>Kiani, Mohammad Javad ; Harun, Fauzan Khairi Che ; Ahmadi, Mohammad Taghi ; Rahmani, Meisam ; Saeidmanesh, Mahdi ; Zare, Moslem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b493t-44df3d65d73ee0c5518c2f23f8a21c686afa2f092c0aa8e25935c7946f9ee0543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemistry and Materials Science</topic><topic>Materials Science</topic><topic>Molecular Medicine</topic><topic>Nano Idea</topic><topic>Nanochemistry</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiani, Mohammad Javad</creatorcontrib><creatorcontrib>Harun, Fauzan Khairi Che</creatorcontrib><creatorcontrib>Ahmadi, Mohammad Taghi</creatorcontrib><creatorcontrib>Rahmani, Meisam</creatorcontrib><creatorcontrib>Saeidmanesh, Mahdi</creatorcontrib><creatorcontrib>Zare, Moslem</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiani, Mohammad Javad</au><au>Harun, Fauzan Khairi Che</au><au>Ahmadi, Mohammad Taghi</au><au>Rahmani, Meisam</au><au>Saeidmanesh, Mahdi</au><au>Zare, Moslem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><addtitle>Nanoscale Res Lett</addtitle><date>2014-07-30</date><risdate>2014</risdate><volume>9</volume><issue>1</issue><spage>371</spage><epage>371</epage><pages>371-371</pages><artnum>371</artnum><issn>1931-7573</issn><issn>1556-276X</issn><eissn>1556-276X</eissn><abstract>Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET). In this paper, a monolayer graphene-based GFET with a focus on the conductance variation caused by membrane electric charges and thickness is studied. Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane. The electric charge and thickness of the lipid bilayer ( Q LP and L LP ) as a function of carrier density are proposed, and the control parameters are defined. Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement.</abstract><cop>New York</cop><pub>Springer New York</pub><pmid>25114659</pmid><doi>10.1186/1556-276X-9-371</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-7573
ispartof Nanoscale research letters, 2014-07, Vol.9 (1), p.371-371, Article 371
issn 1931-7573
1556-276X
1556-276X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4125348
source Publicly Available Content Database; IngentaConnect Journals; PubMed Central
subjects Chemistry and Materials Science
Materials Science
Molecular Medicine
Nano Idea
Nanochemistry
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
title Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductance%20modulation%20of%20charged%20lipid%20bilayer%20using%20electrolyte-gated%20graphene-field%20effect%20transistor&rft.jtitle=Nanoscale%20research%20letters&rft.au=Kiani,%20Mohammad%20Javad&rft.date=2014-07-30&rft.volume=9&rft.issue=1&rft.spage=371&rft.epage=371&rft.pages=371-371&rft.artnum=371&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/1556-276X-9-371&rft_dat=%3Cproquest_pubme%3E1553105466%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b493t-44df3d65d73ee0c5518c2f23f8a21c686afa2f092c0aa8e25935c7946f9ee0543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1553105466&rft_id=info:pmid/25114659&rfr_iscdi=true