Loading…
Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor
Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising...
Saved in:
Published in: | Nanoscale research letters 2014-07, Vol.9 (1), p.371-371, Article 371 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b493t-44df3d65d73ee0c5518c2f23f8a21c686afa2f092c0aa8e25935c7946f9ee0543 |
---|---|
cites | cdi_FETCH-LOGICAL-b493t-44df3d65d73ee0c5518c2f23f8a21c686afa2f092c0aa8e25935c7946f9ee0543 |
container_end_page | 371 |
container_issue | 1 |
container_start_page | 371 |
container_title | Nanoscale research letters |
container_volume | 9 |
creator | Kiani, Mohammad Javad Harun, Fauzan Khairi Che Ahmadi, Mohammad Taghi Rahmani, Meisam Saeidmanesh, Mahdi Zare, Moslem |
description | Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET). In this paper, a monolayer graphene-based GFET with a focus on the conductance variation caused by membrane electric charges and thickness is studied. Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane. The electric charge and thickness of the lipid bilayer (
Q
LP
and
L
LP
) as a function of carrier density are proposed, and the control parameters are defined. Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement. |
doi_str_mv | 10.1186/1556-276X-9-371 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4125348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1553105466</sourcerecordid><originalsourceid>FETCH-LOGICAL-b493t-44df3d65d73ee0c5518c2f23f8a21c686afa2f092c0aa8e25935c7946f9ee0543</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhhtR3HX17E1y9BI33919EXTwCxa8KHgLmaTSkyWdjEn3wvx7M8w6uOCeElIPT6re6rrXlLyjdFDXVEqFWa9-4RHznj7pLs8vT9t95BT3sucX3YtabwkRPenV8-6CSUqFkuNlt9vk5Fa7mGQBzdmt0SwhJ5Q9sjtTJnAohn1waBuiOUBBaw1pQhDBLiXHwwJ4MkujpmL2O0iAfYDoEHjfCLQUk2qoSy4vu2fexAqv7s-r7ufnTz82X_HN9y_fNh9u8FaMfMFCOM-dkq7nAMRKSQfLPON-MIxaNSjjDfNkZJYYMwCTI5e2H4XyY-Ol4Ffd-5N3v25ncBZS6yHqfQmzKQedTdAPKyns9JTvtKBMcjE0wceTYBvyI4KHFZtnfUxdH1PXo257aJK3912U_HuFuug5VAsxmgR5rUee09auUg29PqG25FoL-PNXlOjjkv8jf_PviGf-71YbQE5AbaU0QdG3eS2pxf6o8w-g67Xa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553105466</pqid></control><display><type>article</type><title>Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><source>PubMed Central</source><creator>Kiani, Mohammad Javad ; Harun, Fauzan Khairi Che ; Ahmadi, Mohammad Taghi ; Rahmani, Meisam ; Saeidmanesh, Mahdi ; Zare, Moslem</creator><creatorcontrib>Kiani, Mohammad Javad ; Harun, Fauzan Khairi Che ; Ahmadi, Mohammad Taghi ; Rahmani, Meisam ; Saeidmanesh, Mahdi ; Zare, Moslem</creatorcontrib><description>Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET). In this paper, a monolayer graphene-based GFET with a focus on the conductance variation caused by membrane electric charges and thickness is studied. Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane. The electric charge and thickness of the lipid bilayer (
Q
LP
and
L
LP
) as a function of carrier density are proposed, and the control parameters are defined. Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement.</description><identifier>ISSN: 1931-7573</identifier><identifier>ISSN: 1556-276X</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/1556-276X-9-371</identifier><identifier>PMID: 25114659</identifier><language>eng</language><publisher>New York: Springer New York</publisher><subject>Chemistry and Materials Science ; Materials Science ; Molecular Medicine ; Nano Idea ; Nanochemistry ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering</subject><ispartof>Nanoscale research letters, 2014-07, Vol.9 (1), p.371-371, Article 371</ispartof><rights>Kiani et al.; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.</rights><rights>Copyright © 2014 Kiani et al.; licensee Springer. 2014 Kiani et al.; licensee Springer.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b493t-44df3d65d73ee0c5518c2f23f8a21c686afa2f092c0aa8e25935c7946f9ee0543</citedby><cites>FETCH-LOGICAL-b493t-44df3d65d73ee0c5518c2f23f8a21c686afa2f092c0aa8e25935c7946f9ee0543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125348/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125348/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25114659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiani, Mohammad Javad</creatorcontrib><creatorcontrib>Harun, Fauzan Khairi Che</creatorcontrib><creatorcontrib>Ahmadi, Mohammad Taghi</creatorcontrib><creatorcontrib>Rahmani, Meisam</creatorcontrib><creatorcontrib>Saeidmanesh, Mahdi</creatorcontrib><creatorcontrib>Zare, Moslem</creatorcontrib><title>Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><addtitle>Nanoscale Res Lett</addtitle><description>Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET). In this paper, a monolayer graphene-based GFET with a focus on the conductance variation caused by membrane electric charges and thickness is studied. Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane. The electric charge and thickness of the lipid bilayer (
Q
LP
and
L
LP
) as a function of carrier density are proposed, and the control parameters are defined. Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement.</description><subject>Chemistry and Materials Science</subject><subject>Materials Science</subject><subject>Molecular Medicine</subject><subject>Nano Idea</subject><subject>Nanochemistry</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><issn>1931-7573</issn><issn>1556-276X</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kU2LFDEQhhtR3HX17E1y9BI33919EXTwCxa8KHgLmaTSkyWdjEn3wvx7M8w6uOCeElIPT6re6rrXlLyjdFDXVEqFWa9-4RHznj7pLs8vT9t95BT3sucX3YtabwkRPenV8-6CSUqFkuNlt9vk5Fa7mGQBzdmt0SwhJ5Q9sjtTJnAohn1waBuiOUBBaw1pQhDBLiXHwwJ4MkujpmL2O0iAfYDoEHjfCLQUk2qoSy4vu2fexAqv7s-r7ufnTz82X_HN9y_fNh9u8FaMfMFCOM-dkq7nAMRKSQfLPON-MIxaNSjjDfNkZJYYMwCTI5e2H4XyY-Ol4Ffd-5N3v25ncBZS6yHqfQmzKQedTdAPKyns9JTvtKBMcjE0wceTYBvyI4KHFZtnfUxdH1PXo257aJK3912U_HuFuug5VAsxmgR5rUee09auUg29PqG25FoL-PNXlOjjkv8jf_PviGf-71YbQE5AbaU0QdG3eS2pxf6o8w-g67Xa</recordid><startdate>20140730</startdate><enddate>20140730</enddate><creator>Kiani, Mohammad Javad</creator><creator>Harun, Fauzan Khairi Che</creator><creator>Ahmadi, Mohammad Taghi</creator><creator>Rahmani, Meisam</creator><creator>Saeidmanesh, Mahdi</creator><creator>Zare, Moslem</creator><general>Springer New York</general><general>BioMed Central Ltd</general><general>Springer</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140730</creationdate><title>Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor</title><author>Kiani, Mohammad Javad ; Harun, Fauzan Khairi Che ; Ahmadi, Mohammad Taghi ; Rahmani, Meisam ; Saeidmanesh, Mahdi ; Zare, Moslem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b493t-44df3d65d73ee0c5518c2f23f8a21c686afa2f092c0aa8e25935c7946f9ee0543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemistry and Materials Science</topic><topic>Materials Science</topic><topic>Molecular Medicine</topic><topic>Nano Idea</topic><topic>Nanochemistry</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiani, Mohammad Javad</creatorcontrib><creatorcontrib>Harun, Fauzan Khairi Che</creatorcontrib><creatorcontrib>Ahmadi, Mohammad Taghi</creatorcontrib><creatorcontrib>Rahmani, Meisam</creatorcontrib><creatorcontrib>Saeidmanesh, Mahdi</creatorcontrib><creatorcontrib>Zare, Moslem</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiani, Mohammad Javad</au><au>Harun, Fauzan Khairi Che</au><au>Ahmadi, Mohammad Taghi</au><au>Rahmani, Meisam</au><au>Saeidmanesh, Mahdi</au><au>Zare, Moslem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><addtitle>Nanoscale Res Lett</addtitle><date>2014-07-30</date><risdate>2014</risdate><volume>9</volume><issue>1</issue><spage>371</spage><epage>371</epage><pages>371-371</pages><artnum>371</artnum><issn>1931-7573</issn><issn>1556-276X</issn><eissn>1556-276X</eissn><abstract>Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET). In this paper, a monolayer graphene-based GFET with a focus on the conductance variation caused by membrane electric charges and thickness is studied. Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane. The electric charge and thickness of the lipid bilayer (
Q
LP
and
L
LP
) as a function of carrier density are proposed, and the control parameters are defined. Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement.</abstract><cop>New York</cop><pub>Springer New York</pub><pmid>25114659</pmid><doi>10.1186/1556-276X-9-371</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-7573 |
ispartof | Nanoscale research letters, 2014-07, Vol.9 (1), p.371-371, Article 371 |
issn | 1931-7573 1556-276X 1556-276X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4125348 |
source | Publicly Available Content Database; IngentaConnect Journals; PubMed Central |
subjects | Chemistry and Materials Science Materials Science Molecular Medicine Nano Idea Nanochemistry Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering |
title | Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductance%20modulation%20of%20charged%20lipid%20bilayer%20using%20electrolyte-gated%20graphene-field%20effect%20transistor&rft.jtitle=Nanoscale%20research%20letters&rft.au=Kiani,%20Mohammad%20Javad&rft.date=2014-07-30&rft.volume=9&rft.issue=1&rft.spage=371&rft.epage=371&rft.pages=371-371&rft.artnum=371&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/1556-276X-9-371&rft_dat=%3Cproquest_pubme%3E1553105466%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b493t-44df3d65d73ee0c5518c2f23f8a21c686afa2f092c0aa8e25935c7946f9ee0543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1553105466&rft_id=info:pmid/25114659&rfr_iscdi=true |