Loading…

Sox2, a key factor in the regulation of pluripotency and neural differentiation

Sex determining region Y-box 2(Sox2), a member of the SoxB1 transcription factor family, is an important transcriptional regulator in pluripotent stem cells(PSCs). Together with octamer-binding transcription factor 4 and Nanog, they co-operatively control gene expression in PSCs and maintain their p...

Full description

Saved in:
Bibliographic Details
Published in:World journal of stem cells 2014-07, Vol.6 (3), p.305-311
Main Authors: Zhang, Shuchen, Cui, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sex determining region Y-box 2(Sox2), a member of the SoxB1 transcription factor family, is an important transcriptional regulator in pluripotent stem cells(PSCs). Together with octamer-binding transcription factor 4 and Nanog, they co-operatively control gene expression in PSCs and maintain their pluripotency. Furthermore, Sox2 plays an essential role in somatic cell reprogram-ming, reversing the epigenetic configuration of differ-entiated cells back to a pluripotent embryonic state. In addition to its role in regulation of pluripotency, Sox2 is also a critical factor for directing the differentiation of PSCs to neural progenitors and for maintaining the properties of neural progenitor stem cells. Here, we review recent findings concerning the involvement of Sox2 in pluripotency, somatic cell reprogramming and neural differentiation as well as the molecular mecha-nisms underlying these roles.
ISSN:1948-0210
1948-0210
DOI:10.4252/wjsc.v6.i3.305