Loading…

DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin

The regulation of chromatin structure in eukaryotic cells involves abundant architectural factors such as high mobility group B (HMGB) proteins. It is not understood how these factors control the interplay between genome accessibility and compaction. In vivo, HMO1 binds the promoter and coding regio...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2014-08, Vol.42 (14), p.8996-9004
Main Authors: Murugesapillai, Divakaran, McCauley, Micah J, Huo, Ran, Nelson Holte, Molly H, Stepanyants, Armen, Maher, 3rd, L James, Israeloff, Nathan E, Williams, Mark C
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 9004
container_issue 14
container_start_page 8996
container_title Nucleic acids research
container_volume 42
creator Murugesapillai, Divakaran
McCauley, Micah J
Huo, Ran
Nelson Holte, Molly H
Stepanyants, Armen
Maher, 3rd, L James
Israeloff, Nathan E
Williams, Mark C
description The regulation of chromatin structure in eukaryotic cells involves abundant architectural factors such as high mobility group B (HMGB) proteins. It is not understood how these factors control the interplay between genome accessibility and compaction. In vivo, HMO1 binds the promoter and coding regions of most ribosomal RNA genes, facilitating transcription and possibly stabilizing chromatin in the absence of histones. To understand how HMO1 performs these functions, we combine single molecule stretching and atomic force microscopy (AFM). By stretching HMO1-bound DNA, we demonstrate a hierarchical organization of interactions, in which HMO1 initially compacts DNA on a timescale of seconds, followed by bridge formation and stabilization of DNA loops on a timescale of minutes. AFM experiments demonstrate DNA bridging between strands as well as looping by HMO1. Our results support a model in which HMO1 maintains the stability of nucleosome-free chromatin regions by forming complex and dynamic DNA structures mediated by protein-protein interactions.
doi_str_mv 10.1093/nar/gku635
format article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25063301</sourcerecordid><originalsourceid>FETCH-LOGICAL-p163t-4be31cffc248fe94f4a353dbcac1d5d91b34d341b52bc5058d3768ba6727b803</originalsourceid><addsrcrecordid>eNpVkEtOwzAYhC0EoqWw4QDIFwi189tOskGqSqFIhW66j_xKakjsyEkrldNDxUOwmpFm5lsMQteU3FJSwNTLOK3fdgL4CRpTEGnCCpGeojEBwhNKWD5CF33_SghllLNzNEo5EQCEjlF5_zLDKjpTO19j6Q1uQuiOXh3w8nlNcRfD3hnbY4lbq7fSu77FVYi4H6RyjXs_lv1ONzb0obVJFa3FehtDKwfnL9FZJZveXn3rBG0eFpv5MlmtH5_ms1XSUQFDwpQFqqtKpyyvbMEqJoGDUVpqargpqAJmgFHFU6U54bmBTORKiizNVE5ggu6-sN1OtdZo64com7KLrpXxUAbpyv-Jd9uyDvuSUUgzxj8BN38Bv8ufp-ADJ2htPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin</title><source>PubMed Central (Open Access)</source><source>Oxford Open</source><creator>Murugesapillai, Divakaran ; McCauley, Micah J ; Huo, Ran ; Nelson Holte, Molly H ; Stepanyants, Armen ; Maher, 3rd, L James ; Israeloff, Nathan E ; Williams, Mark C</creator><creatorcontrib>Murugesapillai, Divakaran ; McCauley, Micah J ; Huo, Ran ; Nelson Holte, Molly H ; Stepanyants, Armen ; Maher, 3rd, L James ; Israeloff, Nathan E ; Williams, Mark C</creatorcontrib><description>The regulation of chromatin structure in eukaryotic cells involves abundant architectural factors such as high mobility group B (HMGB) proteins. It is not understood how these factors control the interplay between genome accessibility and compaction. In vivo, HMO1 binds the promoter and coding regions of most ribosomal RNA genes, facilitating transcription and possibly stabilizing chromatin in the absence of histones. To understand how HMO1 performs these functions, we combine single molecule stretching and atomic force microscopy (AFM). By stretching HMO1-bound DNA, we demonstrate a hierarchical organization of interactions, in which HMO1 initially compacts DNA on a timescale of seconds, followed by bridge formation and stabilization of DNA loops on a timescale of minutes. AFM experiments demonstrate DNA bridging between strands as well as looping by HMO1. Our results support a model in which HMO1 maintains the stability of nucleosome-free chromatin regions by forming complex and dynamic DNA structures mediated by protein-protein interactions.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gku635</identifier><identifier>PMID: 25063301</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Chromatin - chemistry ; DNA - chemistry ; DNA - metabolism ; DNA - ultrastructure ; Gene regulation, Chromatin and Epigenetics ; High Mobility Group Proteins - metabolism ; Nucleic Acid Conformation ; Nucleosomes - chemistry ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Nucleic acids research, 2014-08, Vol.42 (14), p.8996-9004</ispartof><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132745/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132745/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25063301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murugesapillai, Divakaran</creatorcontrib><creatorcontrib>McCauley, Micah J</creatorcontrib><creatorcontrib>Huo, Ran</creatorcontrib><creatorcontrib>Nelson Holte, Molly H</creatorcontrib><creatorcontrib>Stepanyants, Armen</creatorcontrib><creatorcontrib>Maher, 3rd, L James</creatorcontrib><creatorcontrib>Israeloff, Nathan E</creatorcontrib><creatorcontrib>Williams, Mark C</creatorcontrib><title>DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The regulation of chromatin structure in eukaryotic cells involves abundant architectural factors such as high mobility group B (HMGB) proteins. It is not understood how these factors control the interplay between genome accessibility and compaction. In vivo, HMO1 binds the promoter and coding regions of most ribosomal RNA genes, facilitating transcription and possibly stabilizing chromatin in the absence of histones. To understand how HMO1 performs these functions, we combine single molecule stretching and atomic force microscopy (AFM). By stretching HMO1-bound DNA, we demonstrate a hierarchical organization of interactions, in which HMO1 initially compacts DNA on a timescale of seconds, followed by bridge formation and stabilization of DNA loops on a timescale of minutes. AFM experiments demonstrate DNA bridging between strands as well as looping by HMO1. Our results support a model in which HMO1 maintains the stability of nucleosome-free chromatin regions by forming complex and dynamic DNA structures mediated by protein-protein interactions.</description><subject>Chromatin - chemistry</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA - ultrastructure</subject><subject>Gene regulation, Chromatin and Epigenetics</subject><subject>High Mobility Group Proteins - metabolism</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleosomes - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpVkEtOwzAYhC0EoqWw4QDIFwi189tOskGqSqFIhW66j_xKakjsyEkrldNDxUOwmpFm5lsMQteU3FJSwNTLOK3fdgL4CRpTEGnCCpGeojEBwhNKWD5CF33_SghllLNzNEo5EQCEjlF5_zLDKjpTO19j6Q1uQuiOXh3w8nlNcRfD3hnbY4lbq7fSu77FVYi4H6RyjXs_lv1ONzb0obVJFa3FehtDKwfnL9FZJZveXn3rBG0eFpv5MlmtH5_ms1XSUQFDwpQFqqtKpyyvbMEqJoGDUVpqargpqAJmgFHFU6U54bmBTORKiizNVE5ggu6-sN1OtdZo64com7KLrpXxUAbpyv-Jd9uyDvuSUUgzxj8BN38Bv8ufp-ADJ2htPg</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Murugesapillai, Divakaran</creator><creator>McCauley, Micah J</creator><creator>Huo, Ran</creator><creator>Nelson Holte, Molly H</creator><creator>Stepanyants, Armen</creator><creator>Maher, 3rd, L James</creator><creator>Israeloff, Nathan E</creator><creator>Williams, Mark C</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>201408</creationdate><title>DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin</title><author>Murugesapillai, Divakaran ; McCauley, Micah J ; Huo, Ran ; Nelson Holte, Molly H ; Stepanyants, Armen ; Maher, 3rd, L James ; Israeloff, Nathan E ; Williams, Mark C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p163t-4be31cffc248fe94f4a353dbcac1d5d91b34d341b52bc5058d3768ba6727b803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chromatin - chemistry</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA - ultrastructure</topic><topic>Gene regulation, Chromatin and Epigenetics</topic><topic>High Mobility Group Proteins - metabolism</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleosomes - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murugesapillai, Divakaran</creatorcontrib><creatorcontrib>McCauley, Micah J</creatorcontrib><creatorcontrib>Huo, Ran</creatorcontrib><creatorcontrib>Nelson Holte, Molly H</creatorcontrib><creatorcontrib>Stepanyants, Armen</creatorcontrib><creatorcontrib>Maher, 3rd, L James</creatorcontrib><creatorcontrib>Israeloff, Nathan E</creatorcontrib><creatorcontrib>Williams, Mark C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murugesapillai, Divakaran</au><au>McCauley, Micah J</au><au>Huo, Ran</au><au>Nelson Holte, Molly H</au><au>Stepanyants, Armen</au><au>Maher, 3rd, L James</au><au>Israeloff, Nathan E</au><au>Williams, Mark C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2014-08</date><risdate>2014</risdate><volume>42</volume><issue>14</issue><spage>8996</spage><epage>9004</epage><pages>8996-9004</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>The regulation of chromatin structure in eukaryotic cells involves abundant architectural factors such as high mobility group B (HMGB) proteins. It is not understood how these factors control the interplay between genome accessibility and compaction. In vivo, HMO1 binds the promoter and coding regions of most ribosomal RNA genes, facilitating transcription and possibly stabilizing chromatin in the absence of histones. To understand how HMO1 performs these functions, we combine single molecule stretching and atomic force microscopy (AFM). By stretching HMO1-bound DNA, we demonstrate a hierarchical organization of interactions, in which HMO1 initially compacts DNA on a timescale of seconds, followed by bridge formation and stabilization of DNA loops on a timescale of minutes. AFM experiments demonstrate DNA bridging between strands as well as looping by HMO1. Our results support a model in which HMO1 maintains the stability of nucleosome-free chromatin regions by forming complex and dynamic DNA structures mediated by protein-protein interactions.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25063301</pmid><doi>10.1093/nar/gku635</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2014-08, Vol.42 (14), p.8996-9004
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132745
source PubMed Central (Open Access); Oxford Open
subjects Chromatin - chemistry
DNA - chemistry
DNA - metabolism
DNA - ultrastructure
Gene regulation, Chromatin and Epigenetics
High Mobility Group Proteins - metabolism
Nucleic Acid Conformation
Nucleosomes - chemistry
Saccharomyces cerevisiae Proteins - metabolism
title DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20bridging%20and%20looping%20by%20HMO1%20provides%20a%20mechanism%20for%20stabilizing%20nucleosome-free%20chromatin&rft.jtitle=Nucleic%20acids%20research&rft.au=Murugesapillai,%20Divakaran&rft.date=2014-08&rft.volume=42&rft.issue=14&rft.spage=8996&rft.epage=9004&rft.pages=8996-9004&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gku635&rft_dat=%3Cpubmed%3E25063301%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p163t-4be31cffc248fe94f4a353dbcac1d5d91b34d341b52bc5058d3768ba6727b803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/25063301&rfr_iscdi=true