Loading…
DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin
The regulation of chromatin structure in eukaryotic cells involves abundant architectural factors such as high mobility group B (HMGB) proteins. It is not understood how these factors control the interplay between genome accessibility and compaction. In vivo, HMO1 binds the promoter and coding regio...
Saved in:
Published in: | Nucleic acids research 2014-08, Vol.42 (14), p.8996-9004 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 9004 |
container_issue | 14 |
container_start_page | 8996 |
container_title | Nucleic acids research |
container_volume | 42 |
creator | Murugesapillai, Divakaran McCauley, Micah J Huo, Ran Nelson Holte, Molly H Stepanyants, Armen Maher, 3rd, L James Israeloff, Nathan E Williams, Mark C |
description | The regulation of chromatin structure in eukaryotic cells involves abundant architectural factors such as high mobility group B (HMGB) proteins. It is not understood how these factors control the interplay between genome accessibility and compaction. In vivo, HMO1 binds the promoter and coding regions of most ribosomal RNA genes, facilitating transcription and possibly stabilizing chromatin in the absence of histones. To understand how HMO1 performs these functions, we combine single molecule stretching and atomic force microscopy (AFM). By stretching HMO1-bound DNA, we demonstrate a hierarchical organization of interactions, in which HMO1 initially compacts DNA on a timescale of seconds, followed by bridge formation and stabilization of DNA loops on a timescale of minutes. AFM experiments demonstrate DNA bridging between strands as well as looping by HMO1. Our results support a model in which HMO1 maintains the stability of nucleosome-free chromatin regions by forming complex and dynamic DNA structures mediated by protein-protein interactions. |
doi_str_mv | 10.1093/nar/gku635 |
format | article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25063301</sourcerecordid><originalsourceid>FETCH-LOGICAL-p163t-4be31cffc248fe94f4a353dbcac1d5d91b34d341b52bc5058d3768ba6727b803</originalsourceid><addsrcrecordid>eNpVkEtOwzAYhC0EoqWw4QDIFwi189tOskGqSqFIhW66j_xKakjsyEkrldNDxUOwmpFm5lsMQteU3FJSwNTLOK3fdgL4CRpTEGnCCpGeojEBwhNKWD5CF33_SghllLNzNEo5EQCEjlF5_zLDKjpTO19j6Q1uQuiOXh3w8nlNcRfD3hnbY4lbq7fSu77FVYi4H6RyjXs_lv1ONzb0obVJFa3FehtDKwfnL9FZJZveXn3rBG0eFpv5MlmtH5_ms1XSUQFDwpQFqqtKpyyvbMEqJoGDUVpqargpqAJmgFHFU6U54bmBTORKiizNVE5ggu6-sN1OtdZo64com7KLrpXxUAbpyv-Jd9uyDvuSUUgzxj8BN38Bv8ufp-ADJ2htPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin</title><source>PubMed Central (Open Access)</source><source>Oxford Open</source><creator>Murugesapillai, Divakaran ; McCauley, Micah J ; Huo, Ran ; Nelson Holte, Molly H ; Stepanyants, Armen ; Maher, 3rd, L James ; Israeloff, Nathan E ; Williams, Mark C</creator><creatorcontrib>Murugesapillai, Divakaran ; McCauley, Micah J ; Huo, Ran ; Nelson Holte, Molly H ; Stepanyants, Armen ; Maher, 3rd, L James ; Israeloff, Nathan E ; Williams, Mark C</creatorcontrib><description>The regulation of chromatin structure in eukaryotic cells involves abundant architectural factors such as high mobility group B (HMGB) proteins. It is not understood how these factors control the interplay between genome accessibility and compaction. In vivo, HMO1 binds the promoter and coding regions of most ribosomal RNA genes, facilitating transcription and possibly stabilizing chromatin in the absence of histones. To understand how HMO1 performs these functions, we combine single molecule stretching and atomic force microscopy (AFM). By stretching HMO1-bound DNA, we demonstrate a hierarchical organization of interactions, in which HMO1 initially compacts DNA on a timescale of seconds, followed by bridge formation and stabilization of DNA loops on a timescale of minutes. AFM experiments demonstrate DNA bridging between strands as well as looping by HMO1. Our results support a model in which HMO1 maintains the stability of nucleosome-free chromatin regions by forming complex and dynamic DNA structures mediated by protein-protein interactions.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gku635</identifier><identifier>PMID: 25063301</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Chromatin - chemistry ; DNA - chemistry ; DNA - metabolism ; DNA - ultrastructure ; Gene regulation, Chromatin and Epigenetics ; High Mobility Group Proteins - metabolism ; Nucleic Acid Conformation ; Nucleosomes - chemistry ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Nucleic acids research, 2014-08, Vol.42 (14), p.8996-9004</ispartof><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132745/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132745/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25063301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murugesapillai, Divakaran</creatorcontrib><creatorcontrib>McCauley, Micah J</creatorcontrib><creatorcontrib>Huo, Ran</creatorcontrib><creatorcontrib>Nelson Holte, Molly H</creatorcontrib><creatorcontrib>Stepanyants, Armen</creatorcontrib><creatorcontrib>Maher, 3rd, L James</creatorcontrib><creatorcontrib>Israeloff, Nathan E</creatorcontrib><creatorcontrib>Williams, Mark C</creatorcontrib><title>DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The regulation of chromatin structure in eukaryotic cells involves abundant architectural factors such as high mobility group B (HMGB) proteins. It is not understood how these factors control the interplay between genome accessibility and compaction. In vivo, HMO1 binds the promoter and coding regions of most ribosomal RNA genes, facilitating transcription and possibly stabilizing chromatin in the absence of histones. To understand how HMO1 performs these functions, we combine single molecule stretching and atomic force microscopy (AFM). By stretching HMO1-bound DNA, we demonstrate a hierarchical organization of interactions, in which HMO1 initially compacts DNA on a timescale of seconds, followed by bridge formation and stabilization of DNA loops on a timescale of minutes. AFM experiments demonstrate DNA bridging between strands as well as looping by HMO1. Our results support a model in which HMO1 maintains the stability of nucleosome-free chromatin regions by forming complex and dynamic DNA structures mediated by protein-protein interactions.</description><subject>Chromatin - chemistry</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA - ultrastructure</subject><subject>Gene regulation, Chromatin and Epigenetics</subject><subject>High Mobility Group Proteins - metabolism</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleosomes - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpVkEtOwzAYhC0EoqWw4QDIFwi189tOskGqSqFIhW66j_xKakjsyEkrldNDxUOwmpFm5lsMQteU3FJSwNTLOK3fdgL4CRpTEGnCCpGeojEBwhNKWD5CF33_SghllLNzNEo5EQCEjlF5_zLDKjpTO19j6Q1uQuiOXh3w8nlNcRfD3hnbY4lbq7fSu77FVYi4H6RyjXs_lv1ONzb0obVJFa3FehtDKwfnL9FZJZveXn3rBG0eFpv5MlmtH5_ms1XSUQFDwpQFqqtKpyyvbMEqJoGDUVpqargpqAJmgFHFU6U54bmBTORKiizNVE5ggu6-sN1OtdZo64com7KLrpXxUAbpyv-Jd9uyDvuSUUgzxj8BN38Bv8ufp-ADJ2htPg</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Murugesapillai, Divakaran</creator><creator>McCauley, Micah J</creator><creator>Huo, Ran</creator><creator>Nelson Holte, Molly H</creator><creator>Stepanyants, Armen</creator><creator>Maher, 3rd, L James</creator><creator>Israeloff, Nathan E</creator><creator>Williams, Mark C</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>201408</creationdate><title>DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin</title><author>Murugesapillai, Divakaran ; McCauley, Micah J ; Huo, Ran ; Nelson Holte, Molly H ; Stepanyants, Armen ; Maher, 3rd, L James ; Israeloff, Nathan E ; Williams, Mark C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p163t-4be31cffc248fe94f4a353dbcac1d5d91b34d341b52bc5058d3768ba6727b803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chromatin - chemistry</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA - ultrastructure</topic><topic>Gene regulation, Chromatin and Epigenetics</topic><topic>High Mobility Group Proteins - metabolism</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleosomes - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murugesapillai, Divakaran</creatorcontrib><creatorcontrib>McCauley, Micah J</creatorcontrib><creatorcontrib>Huo, Ran</creatorcontrib><creatorcontrib>Nelson Holte, Molly H</creatorcontrib><creatorcontrib>Stepanyants, Armen</creatorcontrib><creatorcontrib>Maher, 3rd, L James</creatorcontrib><creatorcontrib>Israeloff, Nathan E</creatorcontrib><creatorcontrib>Williams, Mark C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murugesapillai, Divakaran</au><au>McCauley, Micah J</au><au>Huo, Ran</au><au>Nelson Holte, Molly H</au><au>Stepanyants, Armen</au><au>Maher, 3rd, L James</au><au>Israeloff, Nathan E</au><au>Williams, Mark C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2014-08</date><risdate>2014</risdate><volume>42</volume><issue>14</issue><spage>8996</spage><epage>9004</epage><pages>8996-9004</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>The regulation of chromatin structure in eukaryotic cells involves abundant architectural factors such as high mobility group B (HMGB) proteins. It is not understood how these factors control the interplay between genome accessibility and compaction. In vivo, HMO1 binds the promoter and coding regions of most ribosomal RNA genes, facilitating transcription and possibly stabilizing chromatin in the absence of histones. To understand how HMO1 performs these functions, we combine single molecule stretching and atomic force microscopy (AFM). By stretching HMO1-bound DNA, we demonstrate a hierarchical organization of interactions, in which HMO1 initially compacts DNA on a timescale of seconds, followed by bridge formation and stabilization of DNA loops on a timescale of minutes. AFM experiments demonstrate DNA bridging between strands as well as looping by HMO1. Our results support a model in which HMO1 maintains the stability of nucleosome-free chromatin regions by forming complex and dynamic DNA structures mediated by protein-protein interactions.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25063301</pmid><doi>10.1093/nar/gku635</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2014-08, Vol.42 (14), p.8996-9004 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132745 |
source | PubMed Central (Open Access); Oxford Open |
subjects | Chromatin - chemistry DNA - chemistry DNA - metabolism DNA - ultrastructure Gene regulation, Chromatin and Epigenetics High Mobility Group Proteins - metabolism Nucleic Acid Conformation Nucleosomes - chemistry Saccharomyces cerevisiae Proteins - metabolism |
title | DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20bridging%20and%20looping%20by%20HMO1%20provides%20a%20mechanism%20for%20stabilizing%20nucleosome-free%20chromatin&rft.jtitle=Nucleic%20acids%20research&rft.au=Murugesapillai,%20Divakaran&rft.date=2014-08&rft.volume=42&rft.issue=14&rft.spage=8996&rft.epage=9004&rft.pages=8996-9004&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gku635&rft_dat=%3Cpubmed%3E25063301%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p163t-4be31cffc248fe94f4a353dbcac1d5d91b34d341b52bc5058d3768ba6727b803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/25063301&rfr_iscdi=true |