Loading…
Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix
Abstract The translation of cell-based therapies for ischemic tissue repair remains limited by several factors, including poor cell survival and limited target site retention. Advances in nanotechnology enable the development of specifically designed delivery matrices to address these limitations an...
Saved in:
Published in: | Journal of molecular and cellular cardiology 2014-09, Vol.74, p.231-239 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c580t-bc012d500820c8053306296b9b0ccfdd13ed75f058e7fd60e148eccfbb71c8cf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c580t-bc012d500820c8053306296b9b0ccfdd13ed75f058e7fd60e148eccfbb71c8cf3 |
container_end_page | 239 |
container_issue | |
container_start_page | 231 |
container_title | Journal of molecular and cellular cardiology |
container_volume | 74 |
creator | Tongers, Jörn Webber, Matthew J Vaughan, Erin E Sleep, Eduard Renault, Marie-Ange Roncalli, Jerome G Klyachko, Ekaterina Thorne, Tina Yu, Yang Marquardt, Katja-Theres Kamide, Christine E Ito, Aiko Misener, Sol Millay, Meredith Liu, Ting Jujo, Kentaro Qin, Gangjian Losordo, Douglas W Stupp, Samuel I Kishore, Raj |
description | Abstract The translation of cell-based therapies for ischemic tissue repair remains limited by several factors, including poor cell survival and limited target site retention. Advances in nanotechnology enable the development of specifically designed delivery matrices to address these limitations and thereby improve the efficacy of cell-based therapies. Given the relevance of integrin signaling for cellular homeostasis, we developed an injectable, bioactive peptide-based nanofiber matrix that presents an integrin-binding epitope derived from fibronectin, and evaluated its feasibility as a supportive artificial matrix for bone marrow-derived pro-angiogenic cells (BMPACs) used as a therapy in ischemic tissue repair. Incubation of BMPACs with these peptide nanofibers in vitro significantly attenuated apoptosis while enhancing proliferation and adhesion. Pro-angiogenic function was enhanced, as cells readily formed tubes. These effects were, in part, mediated via p38, and p44/p42 MAP kinases, which are downstream pathways of focal adhesion kinase. In a murine model of hind limb ischemia, an intramuscular injection of BMPACs within this bioactive peptide nanofiber matrix resulted in greater retention of cells, enhanced capillary density, increased limb perfusion, reduced necrosis/amputation, and preserved function of the ischemic limb compared to treatment with cells alone. This self-assembling, bioactive peptide nanofiber matrix presenting an integrin-binding domain of fibronectin improves regenerative efficacy of cell-based strategies in ischemic tissue by enhancing cell survival, retention, and reparative functions. |
doi_str_mv | 10.1016/j.yjmcc.2014.05.017 |
format | article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4135436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002228281400193X</els_id><sourcerecordid>S002228281400193X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-bc012d500820c8053306296b9b0ccfdd13ed75f058e7fd60e148eccfbb71c8cf3</originalsourceid><addsrcrecordid>eNqFkt2K1TAQx4so7nH1CQTJC7ROmqYfFy7Isn7AghcqeBfS6XRPapuUpD3YZ_ClTT26qDdeJWT-_5nM_CZJnnPIOPDy5ZBtw4SY5cCLDGQGvHqQHDg0Mq1lXTxMDgB5nuZ1Xl8kT0IYAKAphHicXOQyXqGSh-T7jT1qi9Sx2S1kcWOuZ0jjmLY6xNflSF7PG-udZybgkSaDbDEhrMQ8zdp4tgZj75i2zNiBcNHtSKw1TuNiTsRoNoubic2eAtlll1ptXW9a8iys8-z8wia9ePPtafKo12OgZ7_Oy-Tzm5tP1-_S2w9v31-_vk1R1rCkLQLPu9hBnQPWIIWAMm_KtmkBse86LqirZA-ypqrvSiBe1BQjbVtxrLEXl8nVOe-8thN1GL_l9ahmbybtN-W0UX9HrDmqO3dSBReyEGVMIM4J0LsQPPX3Xg5qZ6MG9ZON2tkokCqyia4Xf5a99_yGEQWvzgKKzZ8MeRXQ0A7H-DhY1TnznwJX__hxNNagHr_SRmFwq7dxroqrkCtQH_f12LeDFwC8EV_ED6gbu9o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Tongers, Jörn ; Webber, Matthew J ; Vaughan, Erin E ; Sleep, Eduard ; Renault, Marie-Ange ; Roncalli, Jerome G ; Klyachko, Ekaterina ; Thorne, Tina ; Yu, Yang ; Marquardt, Katja-Theres ; Kamide, Christine E ; Ito, Aiko ; Misener, Sol ; Millay, Meredith ; Liu, Ting ; Jujo, Kentaro ; Qin, Gangjian ; Losordo, Douglas W ; Stupp, Samuel I ; Kishore, Raj</creator><creatorcontrib>Tongers, Jörn ; Webber, Matthew J ; Vaughan, Erin E ; Sleep, Eduard ; Renault, Marie-Ange ; Roncalli, Jerome G ; Klyachko, Ekaterina ; Thorne, Tina ; Yu, Yang ; Marquardt, Katja-Theres ; Kamide, Christine E ; Ito, Aiko ; Misener, Sol ; Millay, Meredith ; Liu, Ting ; Jujo, Kentaro ; Qin, Gangjian ; Losordo, Douglas W ; Stupp, Samuel I ; Kishore, Raj</creatorcontrib><description>Abstract The translation of cell-based therapies for ischemic tissue repair remains limited by several factors, including poor cell survival and limited target site retention. Advances in nanotechnology enable the development of specifically designed delivery matrices to address these limitations and thereby improve the efficacy of cell-based therapies. Given the relevance of integrin signaling for cellular homeostasis, we developed an injectable, bioactive peptide-based nanofiber matrix that presents an integrin-binding epitope derived from fibronectin, and evaluated its feasibility as a supportive artificial matrix for bone marrow-derived pro-angiogenic cells (BMPACs) used as a therapy in ischemic tissue repair. Incubation of BMPACs with these peptide nanofibers in vitro significantly attenuated apoptosis while enhancing proliferation and adhesion. Pro-angiogenic function was enhanced, as cells readily formed tubes. These effects were, in part, mediated via p38, and p44/p42 MAP kinases, which are downstream pathways of focal adhesion kinase. In a murine model of hind limb ischemia, an intramuscular injection of BMPACs within this bioactive peptide nanofiber matrix resulted in greater retention of cells, enhanced capillary density, increased limb perfusion, reduced necrosis/amputation, and preserved function of the ischemic limb compared to treatment with cells alone. This self-assembling, bioactive peptide nanofiber matrix presenting an integrin-binding domain of fibronectin improves regenerative efficacy of cell-based strategies in ischemic tissue by enhancing cell survival, retention, and reparative functions.</description><identifier>ISSN: 0022-2828</identifier><identifier>EISSN: 1095-8584</identifier><identifier>DOI: 10.1016/j.yjmcc.2014.05.017</identifier><identifier>PMID: 25009075</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Angiogenesis ; Animals ; Biocompatible Materials ; Biomaterials ; Bone Marrow Cells - cytology ; Bone Marrow Cells - metabolism ; Cardiovascular ; Cell Survival ; Cell therapy ; Cell- and Tissue-Based Therapy - methods ; Epitopes - chemistry ; Epitopes - metabolism ; Fibronectins - chemistry ; Fibronectins - metabolism ; Gene Expression ; Hindlimb - blood supply ; Hindlimb - drug effects ; Hindlimb - injuries ; Integrins - metabolism ; Ischemia - pathology ; Ischemia - therapy ; Male ; Mice ; Microcirculation ; Mitogen-Activated Protein Kinase 1 - genetics ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 - genetics ; Mitogen-Activated Protein Kinase 3 - metabolism ; Nanofibers - administration & dosage ; Nanofibers - chemistry ; Nanomedicine ; Neovascularization, Physiologic ; p38 Mitogen-Activated Protein Kinases - genetics ; p38 Mitogen-Activated Protein Kinases - metabolism ; Peptides - administration & dosage ; Peptides - chemical synthesis ; Peptides - metabolism ; Protein Binding ; Regenerative medicine</subject><ispartof>Journal of molecular and cellular cardiology, 2014-09, Vol.74, p.231-239</ispartof><rights>Elsevier Ltd</rights><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><rights>2014 Elsevier Ltd. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-bc012d500820c8053306296b9b0ccfdd13ed75f058e7fd60e148eccfbb71c8cf3</citedby><cites>FETCH-LOGICAL-c580t-bc012d500820c8053306296b9b0ccfdd13ed75f058e7fd60e148eccfbb71c8cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25009075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tongers, Jörn</creatorcontrib><creatorcontrib>Webber, Matthew J</creatorcontrib><creatorcontrib>Vaughan, Erin E</creatorcontrib><creatorcontrib>Sleep, Eduard</creatorcontrib><creatorcontrib>Renault, Marie-Ange</creatorcontrib><creatorcontrib>Roncalli, Jerome G</creatorcontrib><creatorcontrib>Klyachko, Ekaterina</creatorcontrib><creatorcontrib>Thorne, Tina</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Marquardt, Katja-Theres</creatorcontrib><creatorcontrib>Kamide, Christine E</creatorcontrib><creatorcontrib>Ito, Aiko</creatorcontrib><creatorcontrib>Misener, Sol</creatorcontrib><creatorcontrib>Millay, Meredith</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Jujo, Kentaro</creatorcontrib><creatorcontrib>Qin, Gangjian</creatorcontrib><creatorcontrib>Losordo, Douglas W</creatorcontrib><creatorcontrib>Stupp, Samuel I</creatorcontrib><creatorcontrib>Kishore, Raj</creatorcontrib><title>Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix</title><title>Journal of molecular and cellular cardiology</title><addtitle>J Mol Cell Cardiol</addtitle><description>Abstract The translation of cell-based therapies for ischemic tissue repair remains limited by several factors, including poor cell survival and limited target site retention. Advances in nanotechnology enable the development of specifically designed delivery matrices to address these limitations and thereby improve the efficacy of cell-based therapies. Given the relevance of integrin signaling for cellular homeostasis, we developed an injectable, bioactive peptide-based nanofiber matrix that presents an integrin-binding epitope derived from fibronectin, and evaluated its feasibility as a supportive artificial matrix for bone marrow-derived pro-angiogenic cells (BMPACs) used as a therapy in ischemic tissue repair. Incubation of BMPACs with these peptide nanofibers in vitro significantly attenuated apoptosis while enhancing proliferation and adhesion. Pro-angiogenic function was enhanced, as cells readily formed tubes. These effects were, in part, mediated via p38, and p44/p42 MAP kinases, which are downstream pathways of focal adhesion kinase. In a murine model of hind limb ischemia, an intramuscular injection of BMPACs within this bioactive peptide nanofiber matrix resulted in greater retention of cells, enhanced capillary density, increased limb perfusion, reduced necrosis/amputation, and preserved function of the ischemic limb compared to treatment with cells alone. This self-assembling, bioactive peptide nanofiber matrix presenting an integrin-binding domain of fibronectin improves regenerative efficacy of cell-based strategies in ischemic tissue by enhancing cell survival, retention, and reparative functions.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Biocompatible Materials</subject><subject>Biomaterials</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Cardiovascular</subject><subject>Cell Survival</subject><subject>Cell therapy</subject><subject>Cell- and Tissue-Based Therapy - methods</subject><subject>Epitopes - chemistry</subject><subject>Epitopes - metabolism</subject><subject>Fibronectins - chemistry</subject><subject>Fibronectins - metabolism</subject><subject>Gene Expression</subject><subject>Hindlimb - blood supply</subject><subject>Hindlimb - drug effects</subject><subject>Hindlimb - injuries</subject><subject>Integrins - metabolism</subject><subject>Ischemia - pathology</subject><subject>Ischemia - therapy</subject><subject>Male</subject><subject>Mice</subject><subject>Microcirculation</subject><subject>Mitogen-Activated Protein Kinase 1 - genetics</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3 - genetics</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>Nanofibers - administration & dosage</subject><subject>Nanofibers - chemistry</subject><subject>Nanomedicine</subject><subject>Neovascularization, Physiologic</subject><subject>p38 Mitogen-Activated Protein Kinases - genetics</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Peptides - administration & dosage</subject><subject>Peptides - chemical synthesis</subject><subject>Peptides - metabolism</subject><subject>Protein Binding</subject><subject>Regenerative medicine</subject><issn>0022-2828</issn><issn>1095-8584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkt2K1TAQx4so7nH1CQTJC7ROmqYfFy7Isn7AghcqeBfS6XRPapuUpD3YZ_ClTT26qDdeJWT-_5nM_CZJnnPIOPDy5ZBtw4SY5cCLDGQGvHqQHDg0Mq1lXTxMDgB5nuZ1Xl8kT0IYAKAphHicXOQyXqGSh-T7jT1qi9Sx2S1kcWOuZ0jjmLY6xNflSF7PG-udZybgkSaDbDEhrMQ8zdp4tgZj75i2zNiBcNHtSKw1TuNiTsRoNoubic2eAtlll1ptXW9a8iys8-z8wia9ePPtafKo12OgZ7_Oy-Tzm5tP1-_S2w9v31-_vk1R1rCkLQLPu9hBnQPWIIWAMm_KtmkBse86LqirZA-ypqrvSiBe1BQjbVtxrLEXl8nVOe-8thN1GL_l9ahmbybtN-W0UX9HrDmqO3dSBReyEGVMIM4J0LsQPPX3Xg5qZ6MG9ZON2tkokCqyia4Xf5a99_yGEQWvzgKKzZ8MeRXQ0A7H-DhY1TnznwJX__hxNNagHr_SRmFwq7dxroqrkCtQH_f12LeDFwC8EV_ED6gbu9o</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Tongers, Jörn</creator><creator>Webber, Matthew J</creator><creator>Vaughan, Erin E</creator><creator>Sleep, Eduard</creator><creator>Renault, Marie-Ange</creator><creator>Roncalli, Jerome G</creator><creator>Klyachko, Ekaterina</creator><creator>Thorne, Tina</creator><creator>Yu, Yang</creator><creator>Marquardt, Katja-Theres</creator><creator>Kamide, Christine E</creator><creator>Ito, Aiko</creator><creator>Misener, Sol</creator><creator>Millay, Meredith</creator><creator>Liu, Ting</creator><creator>Jujo, Kentaro</creator><creator>Qin, Gangjian</creator><creator>Losordo, Douglas W</creator><creator>Stupp, Samuel I</creator><creator>Kishore, Raj</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20140901</creationdate><title>Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix</title><author>Tongers, Jörn ; Webber, Matthew J ; Vaughan, Erin E ; Sleep, Eduard ; Renault, Marie-Ange ; Roncalli, Jerome G ; Klyachko, Ekaterina ; Thorne, Tina ; Yu, Yang ; Marquardt, Katja-Theres ; Kamide, Christine E ; Ito, Aiko ; Misener, Sol ; Millay, Meredith ; Liu, Ting ; Jujo, Kentaro ; Qin, Gangjian ; Losordo, Douglas W ; Stupp, Samuel I ; Kishore, Raj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-bc012d500820c8053306296b9b0ccfdd13ed75f058e7fd60e148eccfbb71c8cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Biocompatible Materials</topic><topic>Biomaterials</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Cardiovascular</topic><topic>Cell Survival</topic><topic>Cell therapy</topic><topic>Cell- and Tissue-Based Therapy - methods</topic><topic>Epitopes - chemistry</topic><topic>Epitopes - metabolism</topic><topic>Fibronectins - chemistry</topic><topic>Fibronectins - metabolism</topic><topic>Gene Expression</topic><topic>Hindlimb - blood supply</topic><topic>Hindlimb - drug effects</topic><topic>Hindlimb - injuries</topic><topic>Integrins - metabolism</topic><topic>Ischemia - pathology</topic><topic>Ischemia - therapy</topic><topic>Male</topic><topic>Mice</topic><topic>Microcirculation</topic><topic>Mitogen-Activated Protein Kinase 1 - genetics</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3 - genetics</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>Nanofibers - administration & dosage</topic><topic>Nanofibers - chemistry</topic><topic>Nanomedicine</topic><topic>Neovascularization, Physiologic</topic><topic>p38 Mitogen-Activated Protein Kinases - genetics</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Peptides - administration & dosage</topic><topic>Peptides - chemical synthesis</topic><topic>Peptides - metabolism</topic><topic>Protein Binding</topic><topic>Regenerative medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tongers, Jörn</creatorcontrib><creatorcontrib>Webber, Matthew J</creatorcontrib><creatorcontrib>Vaughan, Erin E</creatorcontrib><creatorcontrib>Sleep, Eduard</creatorcontrib><creatorcontrib>Renault, Marie-Ange</creatorcontrib><creatorcontrib>Roncalli, Jerome G</creatorcontrib><creatorcontrib>Klyachko, Ekaterina</creatorcontrib><creatorcontrib>Thorne, Tina</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Marquardt, Katja-Theres</creatorcontrib><creatorcontrib>Kamide, Christine E</creatorcontrib><creatorcontrib>Ito, Aiko</creatorcontrib><creatorcontrib>Misener, Sol</creatorcontrib><creatorcontrib>Millay, Meredith</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Jujo, Kentaro</creatorcontrib><creatorcontrib>Qin, Gangjian</creatorcontrib><creatorcontrib>Losordo, Douglas W</creatorcontrib><creatorcontrib>Stupp, Samuel I</creatorcontrib><creatorcontrib>Kishore, Raj</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular and cellular cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tongers, Jörn</au><au>Webber, Matthew J</au><au>Vaughan, Erin E</au><au>Sleep, Eduard</au><au>Renault, Marie-Ange</au><au>Roncalli, Jerome G</au><au>Klyachko, Ekaterina</au><au>Thorne, Tina</au><au>Yu, Yang</au><au>Marquardt, Katja-Theres</au><au>Kamide, Christine E</au><au>Ito, Aiko</au><au>Misener, Sol</au><au>Millay, Meredith</au><au>Liu, Ting</au><au>Jujo, Kentaro</au><au>Qin, Gangjian</au><au>Losordo, Douglas W</au><au>Stupp, Samuel I</au><au>Kishore, Raj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix</atitle><jtitle>Journal of molecular and cellular cardiology</jtitle><addtitle>J Mol Cell Cardiol</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>74</volume><spage>231</spage><epage>239</epage><pages>231-239</pages><issn>0022-2828</issn><eissn>1095-8584</eissn><abstract>Abstract The translation of cell-based therapies for ischemic tissue repair remains limited by several factors, including poor cell survival and limited target site retention. Advances in nanotechnology enable the development of specifically designed delivery matrices to address these limitations and thereby improve the efficacy of cell-based therapies. Given the relevance of integrin signaling for cellular homeostasis, we developed an injectable, bioactive peptide-based nanofiber matrix that presents an integrin-binding epitope derived from fibronectin, and evaluated its feasibility as a supportive artificial matrix for bone marrow-derived pro-angiogenic cells (BMPACs) used as a therapy in ischemic tissue repair. Incubation of BMPACs with these peptide nanofibers in vitro significantly attenuated apoptosis while enhancing proliferation and adhesion. Pro-angiogenic function was enhanced, as cells readily formed tubes. These effects were, in part, mediated via p38, and p44/p42 MAP kinases, which are downstream pathways of focal adhesion kinase. In a murine model of hind limb ischemia, an intramuscular injection of BMPACs within this bioactive peptide nanofiber matrix resulted in greater retention of cells, enhanced capillary density, increased limb perfusion, reduced necrosis/amputation, and preserved function of the ischemic limb compared to treatment with cells alone. This self-assembling, bioactive peptide nanofiber matrix presenting an integrin-binding domain of fibronectin improves regenerative efficacy of cell-based strategies in ischemic tissue by enhancing cell survival, retention, and reparative functions.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25009075</pmid><doi>10.1016/j.yjmcc.2014.05.017</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2828 |
ispartof | Journal of molecular and cellular cardiology, 2014-09, Vol.74, p.231-239 |
issn | 0022-2828 1095-8584 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4135436 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Angiogenesis Animals Biocompatible Materials Biomaterials Bone Marrow Cells - cytology Bone Marrow Cells - metabolism Cardiovascular Cell Survival Cell therapy Cell- and Tissue-Based Therapy - methods Epitopes - chemistry Epitopes - metabolism Fibronectins - chemistry Fibronectins - metabolism Gene Expression Hindlimb - blood supply Hindlimb - drug effects Hindlimb - injuries Integrins - metabolism Ischemia - pathology Ischemia - therapy Male Mice Microcirculation Mitogen-Activated Protein Kinase 1 - genetics Mitogen-Activated Protein Kinase 1 - metabolism Mitogen-Activated Protein Kinase 3 - genetics Mitogen-Activated Protein Kinase 3 - metabolism Nanofibers - administration & dosage Nanofibers - chemistry Nanomedicine Neovascularization, Physiologic p38 Mitogen-Activated Protein Kinases - genetics p38 Mitogen-Activated Protein Kinases - metabolism Peptides - administration & dosage Peptides - chemical synthesis Peptides - metabolism Protein Binding Regenerative medicine |
title | Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20potency%20of%20cell-based%20therapy%20for%20ischemic%20tissue%20repair%20using%20an%20injectable%20bioactive%20epitope%20presenting%20nanofiber%20support%20matrix&rft.jtitle=Journal%20of%20molecular%20and%20cellular%20cardiology&rft.au=Tongers,%20J%C3%B6rn&rft.date=2014-09-01&rft.volume=74&rft.spage=231&rft.epage=239&rft.pages=231-239&rft.issn=0022-2828&rft.eissn=1095-8584&rft_id=info:doi/10.1016/j.yjmcc.2014.05.017&rft_dat=%3Celsevier_pubme%3ES002228281400193X%3C/elsevier_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c580t-bc012d500820c8053306296b9b0ccfdd13ed75f058e7fd60e148eccfbb71c8cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/25009075&rfr_iscdi=true |