Loading…

Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix

Abstract The translation of cell-based therapies for ischemic tissue repair remains limited by several factors, including poor cell survival and limited target site retention. Advances in nanotechnology enable the development of specifically designed delivery matrices to address these limitations an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular and cellular cardiology 2014-09, Vol.74, p.231-239
Main Authors: Tongers, Jörn, Webber, Matthew J, Vaughan, Erin E, Sleep, Eduard, Renault, Marie-Ange, Roncalli, Jerome G, Klyachko, Ekaterina, Thorne, Tina, Yu, Yang, Marquardt, Katja-Theres, Kamide, Christine E, Ito, Aiko, Misener, Sol, Millay, Meredith, Liu, Ting, Jujo, Kentaro, Qin, Gangjian, Losordo, Douglas W, Stupp, Samuel I, Kishore, Raj
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c580t-bc012d500820c8053306296b9b0ccfdd13ed75f058e7fd60e148eccfbb71c8cf3
cites cdi_FETCH-LOGICAL-c580t-bc012d500820c8053306296b9b0ccfdd13ed75f058e7fd60e148eccfbb71c8cf3
container_end_page 239
container_issue
container_start_page 231
container_title Journal of molecular and cellular cardiology
container_volume 74
creator Tongers, Jörn
Webber, Matthew J
Vaughan, Erin E
Sleep, Eduard
Renault, Marie-Ange
Roncalli, Jerome G
Klyachko, Ekaterina
Thorne, Tina
Yu, Yang
Marquardt, Katja-Theres
Kamide, Christine E
Ito, Aiko
Misener, Sol
Millay, Meredith
Liu, Ting
Jujo, Kentaro
Qin, Gangjian
Losordo, Douglas W
Stupp, Samuel I
Kishore, Raj
description Abstract The translation of cell-based therapies for ischemic tissue repair remains limited by several factors, including poor cell survival and limited target site retention. Advances in nanotechnology enable the development of specifically designed delivery matrices to address these limitations and thereby improve the efficacy of cell-based therapies. Given the relevance of integrin signaling for cellular homeostasis, we developed an injectable, bioactive peptide-based nanofiber matrix that presents an integrin-binding epitope derived from fibronectin, and evaluated its feasibility as a supportive artificial matrix for bone marrow-derived pro-angiogenic cells (BMPACs) used as a therapy in ischemic tissue repair. Incubation of BMPACs with these peptide nanofibers in vitro significantly attenuated apoptosis while enhancing proliferation and adhesion. Pro-angiogenic function was enhanced, as cells readily formed tubes. These effects were, in part, mediated via p38, and p44/p42 MAP kinases, which are downstream pathways of focal adhesion kinase. In a murine model of hind limb ischemia, an intramuscular injection of BMPACs within this bioactive peptide nanofiber matrix resulted in greater retention of cells, enhanced capillary density, increased limb perfusion, reduced necrosis/amputation, and preserved function of the ischemic limb compared to treatment with cells alone. This self-assembling, bioactive peptide nanofiber matrix presenting an integrin-binding domain of fibronectin improves regenerative efficacy of cell-based strategies in ischemic tissue by enhancing cell survival, retention, and reparative functions.
doi_str_mv 10.1016/j.yjmcc.2014.05.017
format article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4135436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002228281400193X</els_id><sourcerecordid>S002228281400193X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-bc012d500820c8053306296b9b0ccfdd13ed75f058e7fd60e148eccfbb71c8cf3</originalsourceid><addsrcrecordid>eNqFkt2K1TAQx4so7nH1CQTJC7ROmqYfFy7Isn7AghcqeBfS6XRPapuUpD3YZ_ClTT26qDdeJWT-_5nM_CZJnnPIOPDy5ZBtw4SY5cCLDGQGvHqQHDg0Mq1lXTxMDgB5nuZ1Xl8kT0IYAKAphHicXOQyXqGSh-T7jT1qi9Sx2S1kcWOuZ0jjmLY6xNflSF7PG-udZybgkSaDbDEhrMQ8zdp4tgZj75i2zNiBcNHtSKw1TuNiTsRoNoubic2eAtlll1ptXW9a8iys8-z8wia9ePPtafKo12OgZ7_Oy-Tzm5tP1-_S2w9v31-_vk1R1rCkLQLPu9hBnQPWIIWAMm_KtmkBse86LqirZA-ypqrvSiBe1BQjbVtxrLEXl8nVOe-8thN1GL_l9ahmbybtN-W0UX9HrDmqO3dSBReyEGVMIM4J0LsQPPX3Xg5qZ6MG9ZON2tkokCqyia4Xf5a99_yGEQWvzgKKzZ8MeRXQ0A7H-DhY1TnznwJX__hxNNagHr_SRmFwq7dxroqrkCtQH_f12LeDFwC8EV_ED6gbu9o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Tongers, Jörn ; Webber, Matthew J ; Vaughan, Erin E ; Sleep, Eduard ; Renault, Marie-Ange ; Roncalli, Jerome G ; Klyachko, Ekaterina ; Thorne, Tina ; Yu, Yang ; Marquardt, Katja-Theres ; Kamide, Christine E ; Ito, Aiko ; Misener, Sol ; Millay, Meredith ; Liu, Ting ; Jujo, Kentaro ; Qin, Gangjian ; Losordo, Douglas W ; Stupp, Samuel I ; Kishore, Raj</creator><creatorcontrib>Tongers, Jörn ; Webber, Matthew J ; Vaughan, Erin E ; Sleep, Eduard ; Renault, Marie-Ange ; Roncalli, Jerome G ; Klyachko, Ekaterina ; Thorne, Tina ; Yu, Yang ; Marquardt, Katja-Theres ; Kamide, Christine E ; Ito, Aiko ; Misener, Sol ; Millay, Meredith ; Liu, Ting ; Jujo, Kentaro ; Qin, Gangjian ; Losordo, Douglas W ; Stupp, Samuel I ; Kishore, Raj</creatorcontrib><description>Abstract The translation of cell-based therapies for ischemic tissue repair remains limited by several factors, including poor cell survival and limited target site retention. Advances in nanotechnology enable the development of specifically designed delivery matrices to address these limitations and thereby improve the efficacy of cell-based therapies. Given the relevance of integrin signaling for cellular homeostasis, we developed an injectable, bioactive peptide-based nanofiber matrix that presents an integrin-binding epitope derived from fibronectin, and evaluated its feasibility as a supportive artificial matrix for bone marrow-derived pro-angiogenic cells (BMPACs) used as a therapy in ischemic tissue repair. Incubation of BMPACs with these peptide nanofibers in vitro significantly attenuated apoptosis while enhancing proliferation and adhesion. Pro-angiogenic function was enhanced, as cells readily formed tubes. These effects were, in part, mediated via p38, and p44/p42 MAP kinases, which are downstream pathways of focal adhesion kinase. In a murine model of hind limb ischemia, an intramuscular injection of BMPACs within this bioactive peptide nanofiber matrix resulted in greater retention of cells, enhanced capillary density, increased limb perfusion, reduced necrosis/amputation, and preserved function of the ischemic limb compared to treatment with cells alone. This self-assembling, bioactive peptide nanofiber matrix presenting an integrin-binding domain of fibronectin improves regenerative efficacy of cell-based strategies in ischemic tissue by enhancing cell survival, retention, and reparative functions.</description><identifier>ISSN: 0022-2828</identifier><identifier>EISSN: 1095-8584</identifier><identifier>DOI: 10.1016/j.yjmcc.2014.05.017</identifier><identifier>PMID: 25009075</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Angiogenesis ; Animals ; Biocompatible Materials ; Biomaterials ; Bone Marrow Cells - cytology ; Bone Marrow Cells - metabolism ; Cardiovascular ; Cell Survival ; Cell therapy ; Cell- and Tissue-Based Therapy - methods ; Epitopes - chemistry ; Epitopes - metabolism ; Fibronectins - chemistry ; Fibronectins - metabolism ; Gene Expression ; Hindlimb - blood supply ; Hindlimb - drug effects ; Hindlimb - injuries ; Integrins - metabolism ; Ischemia - pathology ; Ischemia - therapy ; Male ; Mice ; Microcirculation ; Mitogen-Activated Protein Kinase 1 - genetics ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 - genetics ; Mitogen-Activated Protein Kinase 3 - metabolism ; Nanofibers - administration &amp; dosage ; Nanofibers - chemistry ; Nanomedicine ; Neovascularization, Physiologic ; p38 Mitogen-Activated Protein Kinases - genetics ; p38 Mitogen-Activated Protein Kinases - metabolism ; Peptides - administration &amp; dosage ; Peptides - chemical synthesis ; Peptides - metabolism ; Protein Binding ; Regenerative medicine</subject><ispartof>Journal of molecular and cellular cardiology, 2014-09, Vol.74, p.231-239</ispartof><rights>Elsevier Ltd</rights><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><rights>2014 Elsevier Ltd. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-bc012d500820c8053306296b9b0ccfdd13ed75f058e7fd60e148eccfbb71c8cf3</citedby><cites>FETCH-LOGICAL-c580t-bc012d500820c8053306296b9b0ccfdd13ed75f058e7fd60e148eccfbb71c8cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25009075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tongers, Jörn</creatorcontrib><creatorcontrib>Webber, Matthew J</creatorcontrib><creatorcontrib>Vaughan, Erin E</creatorcontrib><creatorcontrib>Sleep, Eduard</creatorcontrib><creatorcontrib>Renault, Marie-Ange</creatorcontrib><creatorcontrib>Roncalli, Jerome G</creatorcontrib><creatorcontrib>Klyachko, Ekaterina</creatorcontrib><creatorcontrib>Thorne, Tina</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Marquardt, Katja-Theres</creatorcontrib><creatorcontrib>Kamide, Christine E</creatorcontrib><creatorcontrib>Ito, Aiko</creatorcontrib><creatorcontrib>Misener, Sol</creatorcontrib><creatorcontrib>Millay, Meredith</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Jujo, Kentaro</creatorcontrib><creatorcontrib>Qin, Gangjian</creatorcontrib><creatorcontrib>Losordo, Douglas W</creatorcontrib><creatorcontrib>Stupp, Samuel I</creatorcontrib><creatorcontrib>Kishore, Raj</creatorcontrib><title>Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix</title><title>Journal of molecular and cellular cardiology</title><addtitle>J Mol Cell Cardiol</addtitle><description>Abstract The translation of cell-based therapies for ischemic tissue repair remains limited by several factors, including poor cell survival and limited target site retention. Advances in nanotechnology enable the development of specifically designed delivery matrices to address these limitations and thereby improve the efficacy of cell-based therapies. Given the relevance of integrin signaling for cellular homeostasis, we developed an injectable, bioactive peptide-based nanofiber matrix that presents an integrin-binding epitope derived from fibronectin, and evaluated its feasibility as a supportive artificial matrix for bone marrow-derived pro-angiogenic cells (BMPACs) used as a therapy in ischemic tissue repair. Incubation of BMPACs with these peptide nanofibers in vitro significantly attenuated apoptosis while enhancing proliferation and adhesion. Pro-angiogenic function was enhanced, as cells readily formed tubes. These effects were, in part, mediated via p38, and p44/p42 MAP kinases, which are downstream pathways of focal adhesion kinase. In a murine model of hind limb ischemia, an intramuscular injection of BMPACs within this bioactive peptide nanofiber matrix resulted in greater retention of cells, enhanced capillary density, increased limb perfusion, reduced necrosis/amputation, and preserved function of the ischemic limb compared to treatment with cells alone. This self-assembling, bioactive peptide nanofiber matrix presenting an integrin-binding domain of fibronectin improves regenerative efficacy of cell-based strategies in ischemic tissue by enhancing cell survival, retention, and reparative functions.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Biocompatible Materials</subject><subject>Biomaterials</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Cardiovascular</subject><subject>Cell Survival</subject><subject>Cell therapy</subject><subject>Cell- and Tissue-Based Therapy - methods</subject><subject>Epitopes - chemistry</subject><subject>Epitopes - metabolism</subject><subject>Fibronectins - chemistry</subject><subject>Fibronectins - metabolism</subject><subject>Gene Expression</subject><subject>Hindlimb - blood supply</subject><subject>Hindlimb - drug effects</subject><subject>Hindlimb - injuries</subject><subject>Integrins - metabolism</subject><subject>Ischemia - pathology</subject><subject>Ischemia - therapy</subject><subject>Male</subject><subject>Mice</subject><subject>Microcirculation</subject><subject>Mitogen-Activated Protein Kinase 1 - genetics</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3 - genetics</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>Nanofibers - administration &amp; dosage</subject><subject>Nanofibers - chemistry</subject><subject>Nanomedicine</subject><subject>Neovascularization, Physiologic</subject><subject>p38 Mitogen-Activated Protein Kinases - genetics</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Peptides - administration &amp; dosage</subject><subject>Peptides - chemical synthesis</subject><subject>Peptides - metabolism</subject><subject>Protein Binding</subject><subject>Regenerative medicine</subject><issn>0022-2828</issn><issn>1095-8584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkt2K1TAQx4so7nH1CQTJC7ROmqYfFy7Isn7AghcqeBfS6XRPapuUpD3YZ_ClTT26qDdeJWT-_5nM_CZJnnPIOPDy5ZBtw4SY5cCLDGQGvHqQHDg0Mq1lXTxMDgB5nuZ1Xl8kT0IYAKAphHicXOQyXqGSh-T7jT1qi9Sx2S1kcWOuZ0jjmLY6xNflSF7PG-udZybgkSaDbDEhrMQ8zdp4tgZj75i2zNiBcNHtSKw1TuNiTsRoNoubic2eAtlll1ptXW9a8iys8-z8wia9ePPtafKo12OgZ7_Oy-Tzm5tP1-_S2w9v31-_vk1R1rCkLQLPu9hBnQPWIIWAMm_KtmkBse86LqirZA-ypqrvSiBe1BQjbVtxrLEXl8nVOe-8thN1GL_l9ahmbybtN-W0UX9HrDmqO3dSBReyEGVMIM4J0LsQPPX3Xg5qZ6MG9ZON2tkokCqyia4Xf5a99_yGEQWvzgKKzZ8MeRXQ0A7H-DhY1TnznwJX__hxNNagHr_SRmFwq7dxroqrkCtQH_f12LeDFwC8EV_ED6gbu9o</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Tongers, Jörn</creator><creator>Webber, Matthew J</creator><creator>Vaughan, Erin E</creator><creator>Sleep, Eduard</creator><creator>Renault, Marie-Ange</creator><creator>Roncalli, Jerome G</creator><creator>Klyachko, Ekaterina</creator><creator>Thorne, Tina</creator><creator>Yu, Yang</creator><creator>Marquardt, Katja-Theres</creator><creator>Kamide, Christine E</creator><creator>Ito, Aiko</creator><creator>Misener, Sol</creator><creator>Millay, Meredith</creator><creator>Liu, Ting</creator><creator>Jujo, Kentaro</creator><creator>Qin, Gangjian</creator><creator>Losordo, Douglas W</creator><creator>Stupp, Samuel I</creator><creator>Kishore, Raj</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20140901</creationdate><title>Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix</title><author>Tongers, Jörn ; Webber, Matthew J ; Vaughan, Erin E ; Sleep, Eduard ; Renault, Marie-Ange ; Roncalli, Jerome G ; Klyachko, Ekaterina ; Thorne, Tina ; Yu, Yang ; Marquardt, Katja-Theres ; Kamide, Christine E ; Ito, Aiko ; Misener, Sol ; Millay, Meredith ; Liu, Ting ; Jujo, Kentaro ; Qin, Gangjian ; Losordo, Douglas W ; Stupp, Samuel I ; Kishore, Raj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-bc012d500820c8053306296b9b0ccfdd13ed75f058e7fd60e148eccfbb71c8cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Biocompatible Materials</topic><topic>Biomaterials</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Cardiovascular</topic><topic>Cell Survival</topic><topic>Cell therapy</topic><topic>Cell- and Tissue-Based Therapy - methods</topic><topic>Epitopes - chemistry</topic><topic>Epitopes - metabolism</topic><topic>Fibronectins - chemistry</topic><topic>Fibronectins - metabolism</topic><topic>Gene Expression</topic><topic>Hindlimb - blood supply</topic><topic>Hindlimb - drug effects</topic><topic>Hindlimb - injuries</topic><topic>Integrins - metabolism</topic><topic>Ischemia - pathology</topic><topic>Ischemia - therapy</topic><topic>Male</topic><topic>Mice</topic><topic>Microcirculation</topic><topic>Mitogen-Activated Protein Kinase 1 - genetics</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3 - genetics</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>Nanofibers - administration &amp; dosage</topic><topic>Nanofibers - chemistry</topic><topic>Nanomedicine</topic><topic>Neovascularization, Physiologic</topic><topic>p38 Mitogen-Activated Protein Kinases - genetics</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Peptides - administration &amp; dosage</topic><topic>Peptides - chemical synthesis</topic><topic>Peptides - metabolism</topic><topic>Protein Binding</topic><topic>Regenerative medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tongers, Jörn</creatorcontrib><creatorcontrib>Webber, Matthew J</creatorcontrib><creatorcontrib>Vaughan, Erin E</creatorcontrib><creatorcontrib>Sleep, Eduard</creatorcontrib><creatorcontrib>Renault, Marie-Ange</creatorcontrib><creatorcontrib>Roncalli, Jerome G</creatorcontrib><creatorcontrib>Klyachko, Ekaterina</creatorcontrib><creatorcontrib>Thorne, Tina</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Marquardt, Katja-Theres</creatorcontrib><creatorcontrib>Kamide, Christine E</creatorcontrib><creatorcontrib>Ito, Aiko</creatorcontrib><creatorcontrib>Misener, Sol</creatorcontrib><creatorcontrib>Millay, Meredith</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Jujo, Kentaro</creatorcontrib><creatorcontrib>Qin, Gangjian</creatorcontrib><creatorcontrib>Losordo, Douglas W</creatorcontrib><creatorcontrib>Stupp, Samuel I</creatorcontrib><creatorcontrib>Kishore, Raj</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular and cellular cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tongers, Jörn</au><au>Webber, Matthew J</au><au>Vaughan, Erin E</au><au>Sleep, Eduard</au><au>Renault, Marie-Ange</au><au>Roncalli, Jerome G</au><au>Klyachko, Ekaterina</au><au>Thorne, Tina</au><au>Yu, Yang</au><au>Marquardt, Katja-Theres</au><au>Kamide, Christine E</au><au>Ito, Aiko</au><au>Misener, Sol</au><au>Millay, Meredith</au><au>Liu, Ting</au><au>Jujo, Kentaro</au><au>Qin, Gangjian</au><au>Losordo, Douglas W</au><au>Stupp, Samuel I</au><au>Kishore, Raj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix</atitle><jtitle>Journal of molecular and cellular cardiology</jtitle><addtitle>J Mol Cell Cardiol</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>74</volume><spage>231</spage><epage>239</epage><pages>231-239</pages><issn>0022-2828</issn><eissn>1095-8584</eissn><abstract>Abstract The translation of cell-based therapies for ischemic tissue repair remains limited by several factors, including poor cell survival and limited target site retention. Advances in nanotechnology enable the development of specifically designed delivery matrices to address these limitations and thereby improve the efficacy of cell-based therapies. Given the relevance of integrin signaling for cellular homeostasis, we developed an injectable, bioactive peptide-based nanofiber matrix that presents an integrin-binding epitope derived from fibronectin, and evaluated its feasibility as a supportive artificial matrix for bone marrow-derived pro-angiogenic cells (BMPACs) used as a therapy in ischemic tissue repair. Incubation of BMPACs with these peptide nanofibers in vitro significantly attenuated apoptosis while enhancing proliferation and adhesion. Pro-angiogenic function was enhanced, as cells readily formed tubes. These effects were, in part, mediated via p38, and p44/p42 MAP kinases, which are downstream pathways of focal adhesion kinase. In a murine model of hind limb ischemia, an intramuscular injection of BMPACs within this bioactive peptide nanofiber matrix resulted in greater retention of cells, enhanced capillary density, increased limb perfusion, reduced necrosis/amputation, and preserved function of the ischemic limb compared to treatment with cells alone. This self-assembling, bioactive peptide nanofiber matrix presenting an integrin-binding domain of fibronectin improves regenerative efficacy of cell-based strategies in ischemic tissue by enhancing cell survival, retention, and reparative functions.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25009075</pmid><doi>10.1016/j.yjmcc.2014.05.017</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2828
ispartof Journal of molecular and cellular cardiology, 2014-09, Vol.74, p.231-239
issn 0022-2828
1095-8584
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4135436
source ScienceDirect Freedom Collection 2022-2024
subjects Angiogenesis
Animals
Biocompatible Materials
Biomaterials
Bone Marrow Cells - cytology
Bone Marrow Cells - metabolism
Cardiovascular
Cell Survival
Cell therapy
Cell- and Tissue-Based Therapy - methods
Epitopes - chemistry
Epitopes - metabolism
Fibronectins - chemistry
Fibronectins - metabolism
Gene Expression
Hindlimb - blood supply
Hindlimb - drug effects
Hindlimb - injuries
Integrins - metabolism
Ischemia - pathology
Ischemia - therapy
Male
Mice
Microcirculation
Mitogen-Activated Protein Kinase 1 - genetics
Mitogen-Activated Protein Kinase 1 - metabolism
Mitogen-Activated Protein Kinase 3 - genetics
Mitogen-Activated Protein Kinase 3 - metabolism
Nanofibers - administration & dosage
Nanofibers - chemistry
Nanomedicine
Neovascularization, Physiologic
p38 Mitogen-Activated Protein Kinases - genetics
p38 Mitogen-Activated Protein Kinases - metabolism
Peptides - administration & dosage
Peptides - chemical synthesis
Peptides - metabolism
Protein Binding
Regenerative medicine
title Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20potency%20of%20cell-based%20therapy%20for%20ischemic%20tissue%20repair%20using%20an%20injectable%20bioactive%20epitope%20presenting%20nanofiber%20support%20matrix&rft.jtitle=Journal%20of%20molecular%20and%20cellular%20cardiology&rft.au=Tongers,%20J%C3%B6rn&rft.date=2014-09-01&rft.volume=74&rft.spage=231&rft.epage=239&rft.pages=231-239&rft.issn=0022-2828&rft.eissn=1095-8584&rft_id=info:doi/10.1016/j.yjmcc.2014.05.017&rft_dat=%3Celsevier_pubme%3ES002228281400193X%3C/elsevier_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c580t-bc012d500820c8053306296b9b0ccfdd13ed75f058e7fd60e148eccfbb71c8cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/25009075&rfr_iscdi=true