Loading…

Sculpting narrowband Fano resonances inherent in the large-area mid-infrared photonic crystal microresonators for spectroscopic imaging

Fourier transform infrared (FT-IR) imaging spectrometers are almost universally used to record microspectroscopic imaging data in the mid-infrared (mid-IR) spectral region. While the commercial standard, interferometry necessitates collection of large spectral regions, requires a large data handling...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2014-07, Vol.22 (15), p.18142-18158
Main Authors: Liu, Jui-Nung, Schulmerich, Matthew V, Bhargava, Rohit, Cunningham, Brian T
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fourier transform infrared (FT-IR) imaging spectrometers are almost universally used to record microspectroscopic imaging data in the mid-infrared (mid-IR) spectral region. While the commercial standard, interferometry necessitates collection of large spectral regions, requires a large data handling overhead for microscopic imaging and is slow. Here we demonstrate an approach for mid-IR spectroscopic imaging at selected discrete wavelengths using narrowband resonant filtering of a broadband thermal source, enabled by high-performance guided-mode Fano resonances in one-layer, large-area mid-IR photonic crystals on a glass substrate. The microresonant devices enable discrete frequency IR (DF-IR), in which a limited number of wavelengths that are of interest are recorded using a mechanically robust instrument. This considerably simplifies instrumentation as well as overhead of data acquisition, storage and analysis for large format imaging with array detectors. To demonstrate the approach, we perform DF-IR spectral imaging of a polymer USAF resolution target and human tissue in the C-H stretching region (2600-3300 cm(-1)). DF-IR spectroscopy and imaging can be generalized to other IR spectral regions and can serve as an analytical tool for environmental and biomedical applications.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.22.018142