Loading…
Neuromarkers of fatigue and cognitive complaints following chemotherapy for breast cancer: a prospective fMRI investigation
The aim of this study is to use functional magnetic resonance imaging (fMRI) to prospectively examine pre-treatment predictors of post-treatment fatigue and cognitive dysfunction in women treated with adjuvant chemotherapy for breast cancer. Fatigue and cognitive dysfunction often co-occur in women...
Saved in:
Published in: | Breast cancer research and treatment 2014-09, Vol.147 (2), p.445-455 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this study is to use functional magnetic resonance imaging (fMRI) to prospectively examine pre-treatment predictors of post-treatment fatigue and cognitive dysfunction in women treated with adjuvant chemotherapy for breast cancer. Fatigue and cognitive dysfunction often co-occur in women treated for breast cancer. We hypothesized that pre-treatment factors, unrelated to chemotherapy per se, might increase vulnerability to post-treatment fatigue and cognitive dysfunction. Patients treated with (
n
= 28) or without chemotherapy (
n
= 37) and healthy controls (
n
= 32) were scanned coincident with pre- and one-month post-chemotherapy during a verbal working memory task (VWMT) and assessed for fatigue, worry, and cognitive dysfunction. fMRI activity measures in the frontoparietal executive network were used in multiple linear regression to predict post-treatment fatigue and cognitive function. The chemotherapy group reported greater pre-treatment fatigue than controls and showed compromised neural response, characterized by higher spatial variance in executive network activity, than the non-chemotherapy group. Also, the chemotherapy group reported greater post-treatment fatigue than the other groups. Linear regression indicated that pre-treatment spatial variance in executive network activation predicted post-treatment fatigue severity and cognitive complaints, while treatment group, age, hemoglobin, worry, and mean executive network activity levels did not predict these outcomes. Pre-treatment neural inefficiency (indexed by high spatial variance) in the executive network, which supports attention and working memory, was a better predictor of post-treatment cognitive and fatigue complaints than exposure to chemotherapy per se. This executive network compromise could be a pre-treatment neuromarker of risk, indicating patients most likely to benefit from early intervention for fatigue and cognitive dysfunction. |
---|---|
ISSN: | 0167-6806 1573-7217 |
DOI: | 10.1007/s10549-014-3092-6 |