Loading…
ABRA: improved coding indel detection via assembly-based realignment
Variant detection from next-generation sequencing (NGS) data is an increasingly vital aspect of disease diagnosis, treatment and research. Commonly used NGS-variant analysis tools generally rely on accurately mapped short reads to identify somatic variants and germ-line genotypes. Existing NGS read...
Saved in:
Published in: | Bioinformatics (Oxford, England) England), 2014-10, Vol.30 (19), p.2813-2815 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c477t-dbd7b663832a5e275f2e9a473f19e9e9967572050fe495211a76f2cad155138f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c477t-dbd7b663832a5e275f2e9a473f19e9e9967572050fe495211a76f2cad155138f3 |
container_end_page | 2815 |
container_issue | 19 |
container_start_page | 2813 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 30 |
creator | Mose, Lisle E Wilkerson, Matthew D Hayes, D Neil Perou, Charles M Parker, Joel S |
description | Variant detection from next-generation sequencing (NGS) data is an increasingly vital aspect of disease diagnosis, treatment and research. Commonly used NGS-variant analysis tools generally rely on accurately mapped short reads to identify somatic variants and germ-line genotypes. Existing NGS read mappers have difficulty accurately mapping short reads containing complex variation (i.e. more than a single base change), thus making identification of such variants difficult or impossible. Insertions and deletions (indels) in particular have been an area of great difficulty. Indels are frequent and can have substantial impact on function, which makes their detection all the more imperative.
We present ABRA, an assembly-based realigner, which uses an efficient and flexible localized de novo assembly followed by global realignment to more accurately remap reads. This results in enhanced performance for indel detection as well as improved accuracy in variant allele frequency estimation.
ABRA is implemented in a combination of Java and C/C++ and is freely available for download at https://github.com/mozack/abra. |
doi_str_mv | 10.1093/bioinformatics/btu376 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4173014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24907369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-dbd7b663832a5e275f2e9a473f19e9e9967572050fe495211a76f2cad155138f3</originalsourceid><addsrcrecordid>eNpVkN1KAzEQhYMotlYfQdkXWJtsNknjhVDrLxQE0euQTSY1srspyXahb-9KtVjmYgZmzjnDh9AlwdcESzqtfPCtC7HRnTdpWnUbKvgRGhPKRV7OCDnez5iO0FlKXxhjhhk_RaOilFhQLsfofn73Nr_JfLOOoQebmWB9u8p8a6HOLHRgOh_arPc60ylBU9XbvNJpuIyga79qG2i7c3TidJ3g4rdP0Mfjw_viOV--Pr0s5svclEJ0ua2sqDinM1poBoVgrgCpS0EdkTCU5IKJYvjRQSlZQYgW3BVGW8IYoTNHJ-h257veVA1YM0RHXat19I2OWxW0V4eb1n-qVehVSQTFpBwM2M7AxJBSBLfXEqx-sKpDrGqHddBd_Q_eq_440m8UqHq6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ABRA: improved coding indel detection via assembly-based realignment</title><source>Open Access: PubMed Central</source><source>Oxford University Press Open Access</source><creator>Mose, Lisle E ; Wilkerson, Matthew D ; Hayes, D Neil ; Perou, Charles M ; Parker, Joel S</creator><creatorcontrib>Mose, Lisle E ; Wilkerson, Matthew D ; Hayes, D Neil ; Perou, Charles M ; Parker, Joel S</creatorcontrib><description>Variant detection from next-generation sequencing (NGS) data is an increasingly vital aspect of disease diagnosis, treatment and research. Commonly used NGS-variant analysis tools generally rely on accurately mapped short reads to identify somatic variants and germ-line genotypes. Existing NGS read mappers have difficulty accurately mapping short reads containing complex variation (i.e. more than a single base change), thus making identification of such variants difficult or impossible. Insertions and deletions (indels) in particular have been an area of great difficulty. Indels are frequent and can have substantial impact on function, which makes their detection all the more imperative.
We present ABRA, an assembly-based realigner, which uses an efficient and flexible localized de novo assembly followed by global realignment to more accurately remap reads. This results in enhanced performance for indel detection as well as improved accuracy in variant allele frequency estimation.
ABRA is implemented in a combination of Java and C/C++ and is freely available for download at https://github.com/mozack/abra.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btu376</identifier><identifier>PMID: 24907369</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Applications Notes ; Computational Biology - methods ; Gene Frequency ; Genome, Human ; Genotype ; High-Throughput Nucleotide Sequencing ; Humans ; INDEL Mutation ; Programming Languages ; Sequence Alignment - methods ; Sequence Analysis, DNA - methods ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2014-10, Vol.30 (19), p.2813-2815</ispartof><rights>The Author 2014. Published by Oxford University Press.</rights><rights>The Author 2014. Published by Oxford University Press. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-dbd7b663832a5e275f2e9a473f19e9e9967572050fe495211a76f2cad155138f3</citedby><cites>FETCH-LOGICAL-c477t-dbd7b663832a5e275f2e9a473f19e9e9967572050fe495211a76f2cad155138f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173014/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173014/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24907369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mose, Lisle E</creatorcontrib><creatorcontrib>Wilkerson, Matthew D</creatorcontrib><creatorcontrib>Hayes, D Neil</creatorcontrib><creatorcontrib>Perou, Charles M</creatorcontrib><creatorcontrib>Parker, Joel S</creatorcontrib><title>ABRA: improved coding indel detection via assembly-based realignment</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Variant detection from next-generation sequencing (NGS) data is an increasingly vital aspect of disease diagnosis, treatment and research. Commonly used NGS-variant analysis tools generally rely on accurately mapped short reads to identify somatic variants and germ-line genotypes. Existing NGS read mappers have difficulty accurately mapping short reads containing complex variation (i.e. more than a single base change), thus making identification of such variants difficult or impossible. Insertions and deletions (indels) in particular have been an area of great difficulty. Indels are frequent and can have substantial impact on function, which makes their detection all the more imperative.
We present ABRA, an assembly-based realigner, which uses an efficient and flexible localized de novo assembly followed by global realignment to more accurately remap reads. This results in enhanced performance for indel detection as well as improved accuracy in variant allele frequency estimation.
ABRA is implemented in a combination of Java and C/C++ and is freely available for download at https://github.com/mozack/abra.</description><subject>Algorithms</subject><subject>Applications Notes</subject><subject>Computational Biology - methods</subject><subject>Gene Frequency</subject><subject>Genome, Human</subject><subject>Genotype</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>INDEL Mutation</subject><subject>Programming Languages</subject><subject>Sequence Alignment - methods</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpVkN1KAzEQhYMotlYfQdkXWJtsNknjhVDrLxQE0euQTSY1srspyXahb-9KtVjmYgZmzjnDh9AlwdcESzqtfPCtC7HRnTdpWnUbKvgRGhPKRV7OCDnez5iO0FlKXxhjhhk_RaOilFhQLsfofn73Nr_JfLOOoQebmWB9u8p8a6HOLHRgOh_arPc60ylBU9XbvNJpuIyga79qG2i7c3TidJ3g4rdP0Mfjw_viOV--Pr0s5svclEJ0ua2sqDinM1poBoVgrgCpS0EdkTCU5IKJYvjRQSlZQYgW3BVGW8IYoTNHJ-h257veVA1YM0RHXat19I2OWxW0V4eb1n-qVehVSQTFpBwM2M7AxJBSBLfXEqx-sKpDrGqHddBd_Q_eq_440m8UqHq6</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Mose, Lisle E</creator><creator>Wilkerson, Matthew D</creator><creator>Hayes, D Neil</creator><creator>Perou, Charles M</creator><creator>Parker, Joel S</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20141001</creationdate><title>ABRA: improved coding indel detection via assembly-based realignment</title><author>Mose, Lisle E ; Wilkerson, Matthew D ; Hayes, D Neil ; Perou, Charles M ; Parker, Joel S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-dbd7b663832a5e275f2e9a473f19e9e9967572050fe495211a76f2cad155138f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applications Notes</topic><topic>Computational Biology - methods</topic><topic>Gene Frequency</topic><topic>Genome, Human</topic><topic>Genotype</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>INDEL Mutation</topic><topic>Programming Languages</topic><topic>Sequence Alignment - methods</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mose, Lisle E</creatorcontrib><creatorcontrib>Wilkerson, Matthew D</creatorcontrib><creatorcontrib>Hayes, D Neil</creatorcontrib><creatorcontrib>Perou, Charles M</creatorcontrib><creatorcontrib>Parker, Joel S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mose, Lisle E</au><au>Wilkerson, Matthew D</au><au>Hayes, D Neil</au><au>Perou, Charles M</au><au>Parker, Joel S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ABRA: improved coding indel detection via assembly-based realignment</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>30</volume><issue>19</issue><spage>2813</spage><epage>2815</epage><pages>2813-2815</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Variant detection from next-generation sequencing (NGS) data is an increasingly vital aspect of disease diagnosis, treatment and research. Commonly used NGS-variant analysis tools generally rely on accurately mapped short reads to identify somatic variants and germ-line genotypes. Existing NGS read mappers have difficulty accurately mapping short reads containing complex variation (i.e. more than a single base change), thus making identification of such variants difficult or impossible. Insertions and deletions (indels) in particular have been an area of great difficulty. Indels are frequent and can have substantial impact on function, which makes their detection all the more imperative.
We present ABRA, an assembly-based realigner, which uses an efficient and flexible localized de novo assembly followed by global realignment to more accurately remap reads. This results in enhanced performance for indel detection as well as improved accuracy in variant allele frequency estimation.
ABRA is implemented in a combination of Java and C/C++ and is freely available for download at https://github.com/mozack/abra.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>24907369</pmid><doi>10.1093/bioinformatics/btu376</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2014-10, Vol.30 (19), p.2813-2815 |
issn | 1367-4803 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4173014 |
source | Open Access: PubMed Central; Oxford University Press Open Access |
subjects | Algorithms Applications Notes Computational Biology - methods Gene Frequency Genome, Human Genotype High-Throughput Nucleotide Sequencing Humans INDEL Mutation Programming Languages Sequence Alignment - methods Sequence Analysis, DNA - methods Software |
title | ABRA: improved coding indel detection via assembly-based realignment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ABRA:%20improved%20coding%20indel%20detection%20via%20assembly-based%20realignment&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Mose,%20Lisle%20E&rft.date=2014-10-01&rft.volume=30&rft.issue=19&rft.spage=2813&rft.epage=2815&rft.pages=2813-2815&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btu376&rft_dat=%3Cpubmed_cross%3E24907369%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-dbd7b663832a5e275f2e9a473f19e9e9967572050fe495211a76f2cad155138f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/24907369&rfr_iscdi=true |