Loading…

Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids

Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomolecular NMR 2011-08, Vol.50 (4), p.421-430, Article 421
Main Authors: Nucci, Nathaniel V., Marques, Bryan S., Bédard, Sabrina, Dogan, Jakob, Gledhill, John M., Moorman, Veronica R., Peterson, Ronald W., Valentine, Kathleen G., Wand, Alison L., Wand, A. Joshua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-cb6c0692e5eb5bdea3544910380a34a68baa84e17d8a59029421110bf09eade23
cites cdi_FETCH-LOGICAL-c468t-cb6c0692e5eb5bdea3544910380a34a68baa84e17d8a59029421110bf09eade23
container_end_page 430
container_issue 4
container_start_page 421
container_title Journal of biomolecular NMR
container_volume 50
creator Nucci, Nathaniel V.
Marques, Bryan S.
Bédard, Sabrina
Dogan, Jakob
Gledhill, John M.
Moorman, Veronica R.
Peterson, Ronald W.
Valentine, Kathleen G.
Wand, Alison L.
Wand, A. Joshua
description Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ~23 to ~10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 43 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect.
doi_str_mv 10.1007/s10858-011-9528-y
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4174299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413430051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-cb6c0692e5eb5bdea3544910380a34a68baa84e17d8a59029421110bf09eade23</originalsourceid><addsrcrecordid>eNp1kc1u1TAQha0KRC8tD9BNFbHpKjB27MTeVEJVC0iFSqisWFhOMimucu1gOxeFp8fRLeVHYmVr5ptjnzmEnFB4RQGa15GCFLIESkslmCyXA7KhoqlKAUCfkA0oJkrWVPKQPI_xHgCUZPUzcshow_NNbMiXmynZrf1hkvWu8EPx8cOnIk7YpeBj56dlraHrzBTn0STsiyn4hNbForcx-nGXS9YVo_9e7GyeiDYtxTDOto_H5OlgxogvHs4j8vnq8vbiXXl98_b9xZvrsuO1TGXX1h3UiqHAVrQ9mkpwrihUEkzFTS1bYyRH2vTSCAVMcUYphXYAhaZHVh2R873uNLdb7Dt0KZhRT8FuTVi0N1b_3XH2q77zO83zGphSWeDsQSD4bzPGpLfZCo6jcejnqKUEpeqGr-TLf8h7PweX3a1QxWtGZYboHuryDmPA4fErFPQanN4Hp3Nweg1OL3nm9E8PjxO_ksoA2wMxt9wdht8v_1_1JwldpoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880346218</pqid></control><display><type>article</type><title>Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids</title><source>Springer Link</source><creator>Nucci, Nathaniel V. ; Marques, Bryan S. ; Bédard, Sabrina ; Dogan, Jakob ; Gledhill, John M. ; Moorman, Veronica R. ; Peterson, Ronald W. ; Valentine, Kathleen G. ; Wand, Alison L. ; Wand, A. Joshua</creator><creatorcontrib>Nucci, Nathaniel V. ; Marques, Bryan S. ; Bédard, Sabrina ; Dogan, Jakob ; Gledhill, John M. ; Moorman, Veronica R. ; Peterson, Ronald W. ; Valentine, Kathleen G. ; Wand, Alison L. ; Wand, A. Joshua</creatorcontrib><description>Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ~23 to ~10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 43 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect.</description><identifier>ISSN: 0925-2738</identifier><identifier>EISSN: 1573-5001</identifier><identifier>DOI: 10.1007/s10858-011-9528-y</identifier><identifier>PMID: 21748265</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biophysics ; Cetrimonium Compounds - chemistry ; Escherichia coli Proteins - chemistry ; Ethane ; Ethane - chemistry ; Experimental methods ; Hexanols - chemistry ; Humans ; Maltose-Binding Proteins - chemistry ; Micelles ; Molecular Weight ; Nuclear Magnetic Resonance, Biomolecular - methods ; Physics ; Physics and Astronomy ; Proteins ; Proteins - chemistry ; Spectroscopy ; Spectroscopy/Spectrometry ; Surface-Active Agents - chemistry ; Viscosity ; Water - chemistry</subject><ispartof>Journal of biomolecular NMR, 2011-08, Vol.50 (4), p.421-430, Article 421</ispartof><rights>Springer Science+Business Media B.V. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-cb6c0692e5eb5bdea3544910380a34a68baa84e17d8a59029421110bf09eade23</citedby><cites>FETCH-LOGICAL-c468t-cb6c0692e5eb5bdea3544910380a34a68baa84e17d8a59029421110bf09eade23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21748265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nucci, Nathaniel V.</creatorcontrib><creatorcontrib>Marques, Bryan S.</creatorcontrib><creatorcontrib>Bédard, Sabrina</creatorcontrib><creatorcontrib>Dogan, Jakob</creatorcontrib><creatorcontrib>Gledhill, John M.</creatorcontrib><creatorcontrib>Moorman, Veronica R.</creatorcontrib><creatorcontrib>Peterson, Ronald W.</creatorcontrib><creatorcontrib>Valentine, Kathleen G.</creatorcontrib><creatorcontrib>Wand, Alison L.</creatorcontrib><creatorcontrib>Wand, A. Joshua</creatorcontrib><title>Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids</title><title>Journal of biomolecular NMR</title><addtitle>J Biomol NMR</addtitle><addtitle>J Biomol NMR</addtitle><description>Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ~23 to ~10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 43 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Cetrimonium Compounds - chemistry</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Ethane</subject><subject>Ethane - chemistry</subject><subject>Experimental methods</subject><subject>Hexanols - chemistry</subject><subject>Humans</subject><subject>Maltose-Binding Proteins - chemistry</subject><subject>Micelles</subject><subject>Molecular Weight</subject><subject>Nuclear Magnetic Resonance, Biomolecular - methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Spectroscopy</subject><subject>Spectroscopy/Spectrometry</subject><subject>Surface-Active Agents - chemistry</subject><subject>Viscosity</subject><subject>Water - chemistry</subject><issn>0925-2738</issn><issn>1573-5001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1TAQha0KRC8tD9BNFbHpKjB27MTeVEJVC0iFSqisWFhOMimucu1gOxeFp8fRLeVHYmVr5ptjnzmEnFB4RQGa15GCFLIESkslmCyXA7KhoqlKAUCfkA0oJkrWVPKQPI_xHgCUZPUzcshow_NNbMiXmynZrf1hkvWu8EPx8cOnIk7YpeBj56dlraHrzBTn0STsiyn4hNbForcx-nGXS9YVo_9e7GyeiDYtxTDOto_H5OlgxogvHs4j8vnq8vbiXXl98_b9xZvrsuO1TGXX1h3UiqHAVrQ9mkpwrihUEkzFTS1bYyRH2vTSCAVMcUYphXYAhaZHVh2R873uNLdb7Dt0KZhRT8FuTVi0N1b_3XH2q77zO83zGphSWeDsQSD4bzPGpLfZCo6jcejnqKUEpeqGr-TLf8h7PweX3a1QxWtGZYboHuryDmPA4fErFPQanN4Hp3Nweg1OL3nm9E8PjxO_ksoA2wMxt9wdht8v_1_1JwldpoA</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Nucci, Nathaniel V.</creator><creator>Marques, Bryan S.</creator><creator>Bédard, Sabrina</creator><creator>Dogan, Jakob</creator><creator>Gledhill, John M.</creator><creator>Moorman, Veronica R.</creator><creator>Peterson, Ronald W.</creator><creator>Valentine, Kathleen G.</creator><creator>Wand, Alison L.</creator><creator>Wand, A. Joshua</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110801</creationdate><title>Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids</title><author>Nucci, Nathaniel V. ; Marques, Bryan S. ; Bédard, Sabrina ; Dogan, Jakob ; Gledhill, John M. ; Moorman, Veronica R. ; Peterson, Ronald W. ; Valentine, Kathleen G. ; Wand, Alison L. ; Wand, A. Joshua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-cb6c0692e5eb5bdea3544910380a34a68baa84e17d8a59029421110bf09eade23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Cetrimonium Compounds - chemistry</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Ethane</topic><topic>Ethane - chemistry</topic><topic>Experimental methods</topic><topic>Hexanols - chemistry</topic><topic>Humans</topic><topic>Maltose-Binding Proteins - chemistry</topic><topic>Micelles</topic><topic>Molecular Weight</topic><topic>Nuclear Magnetic Resonance, Biomolecular - methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Spectroscopy</topic><topic>Spectroscopy/Spectrometry</topic><topic>Surface-Active Agents - chemistry</topic><topic>Viscosity</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nucci, Nathaniel V.</creatorcontrib><creatorcontrib>Marques, Bryan S.</creatorcontrib><creatorcontrib>Bédard, Sabrina</creatorcontrib><creatorcontrib>Dogan, Jakob</creatorcontrib><creatorcontrib>Gledhill, John M.</creatorcontrib><creatorcontrib>Moorman, Veronica R.</creatorcontrib><creatorcontrib>Peterson, Ronald W.</creatorcontrib><creatorcontrib>Valentine, Kathleen G.</creatorcontrib><creatorcontrib>Wand, Alison L.</creatorcontrib><creatorcontrib>Wand, A. Joshua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomolecular NMR</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nucci, Nathaniel V.</au><au>Marques, Bryan S.</au><au>Bédard, Sabrina</au><au>Dogan, Jakob</au><au>Gledhill, John M.</au><au>Moorman, Veronica R.</au><au>Peterson, Ronald W.</au><au>Valentine, Kathleen G.</au><au>Wand, Alison L.</au><au>Wand, A. Joshua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids</atitle><jtitle>Journal of biomolecular NMR</jtitle><stitle>J Biomol NMR</stitle><addtitle>J Biomol NMR</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>50</volume><issue>4</issue><spage>421</spage><epage>430</epage><pages>421-430</pages><artnum>421</artnum><issn>0925-2738</issn><eissn>1573-5001</eissn><abstract>Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ~23 to ~10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 43 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>21748265</pmid><doi>10.1007/s10858-011-9528-y</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-2738
ispartof Journal of biomolecular NMR, 2011-08, Vol.50 (4), p.421-430, Article 421
issn 0925-2738
1573-5001
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4174299
source Springer Link
subjects Biochemistry
Biological and Medical Physics
Biophysics
Cetrimonium Compounds - chemistry
Escherichia coli Proteins - chemistry
Ethane
Ethane - chemistry
Experimental methods
Hexanols - chemistry
Humans
Maltose-Binding Proteins - chemistry
Micelles
Molecular Weight
Nuclear Magnetic Resonance, Biomolecular - methods
Physics
Physics and Astronomy
Proteins
Proteins - chemistry
Spectroscopy
Spectroscopy/Spectrometry
Surface-Active Agents - chemistry
Viscosity
Water - chemistry
title Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A51%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20NMR%20spectroscopy%20of%20encapsulated%20proteins%20dissolved%20in%20low%20viscosity%20fluids&rft.jtitle=Journal%20of%20biomolecular%20NMR&rft.au=Nucci,%20Nathaniel%20V.&rft.date=2011-08-01&rft.volume=50&rft.issue=4&rft.spage=421&rft.epage=430&rft.pages=421-430&rft.artnum=421&rft.issn=0925-2738&rft.eissn=1573-5001&rft_id=info:doi/10.1007/s10858-011-9528-y&rft_dat=%3Cproquest_pubme%3E2413430051%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-cb6c0692e5eb5bdea3544910380a34a68baa84e17d8a59029421110bf09eade23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=880346218&rft_id=info:pmid/21748265&rfr_iscdi=true