Loading…
Biocompatible nanoparticles of KGd(H₂O)₂[Fe(CN)₆]·H₂O with extremely high T₁-weighted relaxivity owing to two water molecules directly bound to the Gd(III) center
A simple one-step method for preparing biocompatible nanoparticles of gadolinium ferrocyanide coordination polymer KGd(H2O)2[Fe(CN)6]·H2O is reported. The crystal structure of this coordination polymer is determined by X-ray powder diffraction using the bulk materials. The stability, cytotoxicity, c...
Saved in:
Published in: | Langmuir 2014-10, Vol.30 (40), p.12018-12026 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A simple one-step method for preparing biocompatible nanoparticles of gadolinium ferrocyanide coordination polymer KGd(H2O)2[Fe(CN)6]·H2O is reported. The crystal structure of this coordination polymer is determined by X-ray powder diffraction using the bulk materials. The stability, cytotoxicity, cellular uptake, and MR phantom and cellular imaging studies suggest that this coordination-polymer structural platform offers a unique opportunity for developing the next generation of T1-weighted contrast agents with high relaxivity as cellular MR probes for biological receptors or markers. Such high-relaxivity MR probes may hold potential in the study of molecular events and may be used for in vivo MR imaging in biomedical research and clinical applications. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la501985p |