Loading…
Crystal structure of a common GPCR-binding interface for G protein and arrestin
G-protein-coupled receptors (GPCRs) transmit extracellular signals to activate intracellular heterotrimeric G proteins (Gαβγ) and arrestins. For G protein signalling, the Gα C-terminus (GαCT) binds to a cytoplasmic crevice of the receptor that opens upon activation. A consensus motif is shared among...
Saved in:
Published in: | Nature communications 2014-09, Vol.5 (1), p.4801-4801, Article 4801 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | G-protein-coupled receptors (GPCRs) transmit extracellular signals to activate intracellular heterotrimeric G proteins (Gαβγ) and arrestins. For G protein signalling, the Gα C-terminus (GαCT) binds to a cytoplasmic crevice of the receptor that opens upon activation. A consensus motif is shared among GαCT from the G
i
/G
t
family and the ‘finger loop’ region (ArrFL1–4) of all four arrestins. Here we present a 2.75 Å crystal structure of ArrFL-1, a peptide analogue of the finger loop of rod photoreceptor arrestin, in complex with the prototypical GPCR rhodopsin. Functional binding of ArrFL to the receptor was confirmed by ultraviolet-visible absorption spectroscopy, competitive binding assays and Fourier transform infrared spectroscopy. For both GαCT and ArrFL, binding to the receptor crevice induces a similar reverse turn structure, although significant structural differences are seen at the rim of the binding crevice. Our results reflect both the common receptor-binding interface and the divergent biological functions of G proteins and arrestins.
G-protein-coupled receptors (GPCRs) transmit signals through intracellular heterotrimeric G proteins and arrestins. Here, Szczepek
et al.
present the structure of a common binding interface for Gα and arrestin on rhodopsin to shed light on key interactions that mediate transduction of specific signals through a single GPCR. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms5801 |