Loading…

Gel Scaffolds of BMP-2-Binding Peptide Amphiphile Nanofibers for Spinal Arthrodesis

Peptide amphiphile (PA) nanofibers formed by self‐assembly can be customized for specific applications in regenerative medicine through the use of molecules that display bioactive signals on their surfaces. Here, the use of PA nanofibers with binding affinity for the bone promoting growth factor BMP...

Full description

Saved in:
Bibliographic Details
Published in:Advanced healthcare materials 2015-01, Vol.4 (1), p.131-141
Main Authors: Lee, Sungsoo S., Hsu, Erin L., Mendoza, Marco, Ghodasra, Jason, Nickoli, Michael S., Ashtekar, Amruta, Polavarapu, Mahesh, Babu, Jacob, Riaz, Rehan M., Nicolas, Joseph D., Nelson, David, Hashmi, Sohaib Z., Kaltz, Stuart R., Earhart, Jeffrey S., Merk, Bradley R., McKee, Jeff S., Bairstow, Shawn F., Shah, Ramille N., Hsu, Wellington K., Stupp, Samuel I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c7459-160b27cba09b76660eeaaa416faacb3460d2bbf945209fbce0d93c337c43de1b3
cites cdi_FETCH-LOGICAL-c7459-160b27cba09b76660eeaaa416faacb3460d2bbf945209fbce0d93c337c43de1b3
container_end_page 141
container_issue 1
container_start_page 131
container_title Advanced healthcare materials
container_volume 4
creator Lee, Sungsoo S.
Hsu, Erin L.
Mendoza, Marco
Ghodasra, Jason
Nickoli, Michael S.
Ashtekar, Amruta
Polavarapu, Mahesh
Babu, Jacob
Riaz, Rehan M.
Nicolas, Joseph D.
Nelson, David
Hashmi, Sohaib Z.
Kaltz, Stuart R.
Earhart, Jeffrey S.
Merk, Bradley R.
McKee, Jeff S.
Bairstow, Shawn F.
Shah, Ramille N.
Hsu, Wellington K.
Stupp, Samuel I.
description Peptide amphiphile (PA) nanofibers formed by self‐assembly can be customized for specific applications in regenerative medicine through the use of molecules that display bioactive signals on their surfaces. Here, the use of PA nanofibers with binding affinity for the bone promoting growth factor BMP‐2 to create a gel scaffold for osteogenesis is reported. With the objective of reducing the amount of BMP‐2 used clinically for successful arthrodesis in the spine, amounts of growth factor incorporated in the scaffolds that are 10 to 100 times lower than that those used clinically in collagen scaffolds are used. The efficacy of the bioactive PA system to promote BMP‐2‐induced osteogenesis in vivo is investigated in a rat posterolateral lumbar intertransverse spinal fusion model. PA nanofiber gels displaying BMP‐2‐binding segments exhibit superior spinal fusion rates relative to controls, effectively decreasing the required therapeutic dose of BMP‐2 by 10‐fold. Interestingly, a 42% fusion rate is observed for gels containing the bioactive nanofibers without the use of exogenous BMP‐2, suggesting the ability of the nanofiber to recruit endogenous growth factor. Results obtained here demonstrate that bioactive biomaterials with capacity to bind specific growth factors by design are great targets for regenerative medicine. Supramolecular nanofibers presenting BMP‐2‐binding epitopes on the surface exhibit superior spinal fusion rates in rats, effectively decreasing the therapeutic dose of BMP‐2 by 10‐fold. Importantly, the bioactive nanofibers elicit 42% fusion rate without the addition of exogenous BMP‐2.
doi_str_mv 10.1002/adhm.201400129
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4206675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3547165891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7459-160b27cba09b76660eeaaa416faacb3460d2bbf945209fbce0d93c337c43de1b3</originalsourceid><addsrcrecordid>eNqFkUFvEzEQhS0EolXaK0e0EhcuG8Ze2xtfkNKWppXSUhEQR8v22o3LZr21N0D_PY5SVoVLrZFsab735JmH0BsMUwxAPqhmvZkSwBQAE_ECHRIsSEk4Ey_HN4UDdJzSHeTDGeYz_BodEFqzijJ2iFYL2xYro5wLbZOK4IqTq5uSlCe-a3x3W9zYfvCNLeabfu1ztba4Vl1wXtuYChdisep9p9piHod1DI1NPh2hV061yR4_3hP07fzT19OLcvl5cXk6X5ampkyUmIMmtdEKhK4552CtUopi7pQyuqIcGqK1E5QREE4bC42oTFXVhlaNxbqaoI97336rN7YxthuiamUf_UbFBxmUl_92Or-Wt-GnpAQ4zxuYoPePBjHcb20a5MYnY9tWdTZsk8Q1iJoAMP48ygUVeawZzui7_9C7sI15RzuKEjoTnEGmpnvKxJBStG78Nwa5S1fu0pVjulnw9um0I_43ywyIPfArp_TwjJ2cn11cPTUv91qfBvt71Kr4Q_K6qpn8fr2Q52LJv9CzWkL1B8TTvyE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642489650</pqid></control><display><type>article</type><title>Gel Scaffolds of BMP-2-Binding Peptide Amphiphile Nanofibers for Spinal Arthrodesis</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Lee, Sungsoo S. ; Hsu, Erin L. ; Mendoza, Marco ; Ghodasra, Jason ; Nickoli, Michael S. ; Ashtekar, Amruta ; Polavarapu, Mahesh ; Babu, Jacob ; Riaz, Rehan M. ; Nicolas, Joseph D. ; Nelson, David ; Hashmi, Sohaib Z. ; Kaltz, Stuart R. ; Earhart, Jeffrey S. ; Merk, Bradley R. ; McKee, Jeff S. ; Bairstow, Shawn F. ; Shah, Ramille N. ; Hsu, Wellington K. ; Stupp, Samuel I.</creator><creatorcontrib>Lee, Sungsoo S. ; Hsu, Erin L. ; Mendoza, Marco ; Ghodasra, Jason ; Nickoli, Michael S. ; Ashtekar, Amruta ; Polavarapu, Mahesh ; Babu, Jacob ; Riaz, Rehan M. ; Nicolas, Joseph D. ; Nelson, David ; Hashmi, Sohaib Z. ; Kaltz, Stuart R. ; Earhart, Jeffrey S. ; Merk, Bradley R. ; McKee, Jeff S. ; Bairstow, Shawn F. ; Shah, Ramille N. ; Hsu, Wellington K. ; Stupp, Samuel I.</creatorcontrib><description>Peptide amphiphile (PA) nanofibers formed by self‐assembly can be customized for specific applications in regenerative medicine through the use of molecules that display bioactive signals on their surfaces. Here, the use of PA nanofibers with binding affinity for the bone promoting growth factor BMP‐2 to create a gel scaffold for osteogenesis is reported. With the objective of reducing the amount of BMP‐2 used clinically for successful arthrodesis in the spine, amounts of growth factor incorporated in the scaffolds that are 10 to 100 times lower than that those used clinically in collagen scaffolds are used. The efficacy of the bioactive PA system to promote BMP‐2‐induced osteogenesis in vivo is investigated in a rat posterolateral lumbar intertransverse spinal fusion model. PA nanofiber gels displaying BMP‐2‐binding segments exhibit superior spinal fusion rates relative to controls, effectively decreasing the required therapeutic dose of BMP‐2 by 10‐fold. Interestingly, a 42% fusion rate is observed for gels containing the bioactive nanofibers without the use of exogenous BMP‐2, suggesting the ability of the nanofiber to recruit endogenous growth factor. Results obtained here demonstrate that bioactive biomaterials with capacity to bind specific growth factors by design are great targets for regenerative medicine. Supramolecular nanofibers presenting BMP‐2‐binding epitopes on the surface exhibit superior spinal fusion rates in rats, effectively decreasing the therapeutic dose of BMP‐2 by 10‐fold. Importantly, the bioactive nanofibers elicit 42% fusion rate without the addition of exogenous BMP‐2.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201400129</identifier><identifier>PMID: 24753455</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Animals ; Biocompatibility ; Biomedical materials ; BMP-2 (bone morphogenetic protein-2) ; Bone Morphogenetic Protein 2 - chemistry ; Bone Morphogenetic Protein 2 - pharmacology ; bone regeneration ; Cell Line ; Disease Models, Animal ; Female ; Growth factors ; Implants, Experimental ; Mice ; Nanofibers ; Nanofibers - chemistry ; Osteogenesis ; peptide amphiphile ; Peptides ; Peptides - chemistry ; Peptides - pharmacology ; Rats ; Rats, Sprague-Dawley ; Regenerative ; regenerative medicine ; Scaffolds ; Self assembly ; Spinal Diseases - therapy ; Spinal Fusion ; Stem cells ; Tissue Scaffolds - chemistry</subject><ispartof>Advanced healthcare materials, 2015-01, Vol.4 (1), p.131-141</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7459-160b27cba09b76660eeaaa416faacb3460d2bbf945209fbce0d93c337c43de1b3</citedby><cites>FETCH-LOGICAL-c7459-160b27cba09b76660eeaaa416faacb3460d2bbf945209fbce0d93c337c43de1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24753455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sungsoo S.</creatorcontrib><creatorcontrib>Hsu, Erin L.</creatorcontrib><creatorcontrib>Mendoza, Marco</creatorcontrib><creatorcontrib>Ghodasra, Jason</creatorcontrib><creatorcontrib>Nickoli, Michael S.</creatorcontrib><creatorcontrib>Ashtekar, Amruta</creatorcontrib><creatorcontrib>Polavarapu, Mahesh</creatorcontrib><creatorcontrib>Babu, Jacob</creatorcontrib><creatorcontrib>Riaz, Rehan M.</creatorcontrib><creatorcontrib>Nicolas, Joseph D.</creatorcontrib><creatorcontrib>Nelson, David</creatorcontrib><creatorcontrib>Hashmi, Sohaib Z.</creatorcontrib><creatorcontrib>Kaltz, Stuart R.</creatorcontrib><creatorcontrib>Earhart, Jeffrey S.</creatorcontrib><creatorcontrib>Merk, Bradley R.</creatorcontrib><creatorcontrib>McKee, Jeff S.</creatorcontrib><creatorcontrib>Bairstow, Shawn F.</creatorcontrib><creatorcontrib>Shah, Ramille N.</creatorcontrib><creatorcontrib>Hsu, Wellington K.</creatorcontrib><creatorcontrib>Stupp, Samuel I.</creatorcontrib><title>Gel Scaffolds of BMP-2-Binding Peptide Amphiphile Nanofibers for Spinal Arthrodesis</title><title>Advanced healthcare materials</title><addtitle>Adv. Healthcare Mater</addtitle><description>Peptide amphiphile (PA) nanofibers formed by self‐assembly can be customized for specific applications in regenerative medicine through the use of molecules that display bioactive signals on their surfaces. Here, the use of PA nanofibers with binding affinity for the bone promoting growth factor BMP‐2 to create a gel scaffold for osteogenesis is reported. With the objective of reducing the amount of BMP‐2 used clinically for successful arthrodesis in the spine, amounts of growth factor incorporated in the scaffolds that are 10 to 100 times lower than that those used clinically in collagen scaffolds are used. The efficacy of the bioactive PA system to promote BMP‐2‐induced osteogenesis in vivo is investigated in a rat posterolateral lumbar intertransverse spinal fusion model. PA nanofiber gels displaying BMP‐2‐binding segments exhibit superior spinal fusion rates relative to controls, effectively decreasing the required therapeutic dose of BMP‐2 by 10‐fold. Interestingly, a 42% fusion rate is observed for gels containing the bioactive nanofibers without the use of exogenous BMP‐2, suggesting the ability of the nanofiber to recruit endogenous growth factor. Results obtained here demonstrate that bioactive biomaterials with capacity to bind specific growth factors by design are great targets for regenerative medicine. Supramolecular nanofibers presenting BMP‐2‐binding epitopes on the surface exhibit superior spinal fusion rates in rats, effectively decreasing the therapeutic dose of BMP‐2 by 10‐fold. Importantly, the bioactive nanofibers elicit 42% fusion rate without the addition of exogenous BMP‐2.</description><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>BMP-2 (bone morphogenetic protein-2)</subject><subject>Bone Morphogenetic Protein 2 - chemistry</subject><subject>Bone Morphogenetic Protein 2 - pharmacology</subject><subject>bone regeneration</subject><subject>Cell Line</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Growth factors</subject><subject>Implants, Experimental</subject><subject>Mice</subject><subject>Nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>Osteogenesis</subject><subject>peptide amphiphile</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Peptides - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Regenerative</subject><subject>regenerative medicine</subject><subject>Scaffolds</subject><subject>Self assembly</subject><subject>Spinal Diseases - therapy</subject><subject>Spinal Fusion</subject><subject>Stem cells</subject><subject>Tissue Scaffolds - chemistry</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkUFvEzEQhS0EolXaK0e0EhcuG8Ze2xtfkNKWppXSUhEQR8v22o3LZr21N0D_PY5SVoVLrZFsab735JmH0BsMUwxAPqhmvZkSwBQAE_ECHRIsSEk4Ey_HN4UDdJzSHeTDGeYz_BodEFqzijJ2iFYL2xYro5wLbZOK4IqTq5uSlCe-a3x3W9zYfvCNLeabfu1ztba4Vl1wXtuYChdisep9p9piHod1DI1NPh2hV061yR4_3hP07fzT19OLcvl5cXk6X5ampkyUmIMmtdEKhK4552CtUopi7pQyuqIcGqK1E5QREE4bC42oTFXVhlaNxbqaoI97336rN7YxthuiamUf_UbFBxmUl_92Or-Wt-GnpAQ4zxuYoPePBjHcb20a5MYnY9tWdTZsk8Q1iJoAMP48ygUVeawZzui7_9C7sI15RzuKEjoTnEGmpnvKxJBStG78Nwa5S1fu0pVjulnw9um0I_43ywyIPfArp_TwjJ2cn11cPTUv91qfBvt71Kr4Q_K6qpn8fr2Q52LJv9CzWkL1B8TTvyE</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Lee, Sungsoo S.</creator><creator>Hsu, Erin L.</creator><creator>Mendoza, Marco</creator><creator>Ghodasra, Jason</creator><creator>Nickoli, Michael S.</creator><creator>Ashtekar, Amruta</creator><creator>Polavarapu, Mahesh</creator><creator>Babu, Jacob</creator><creator>Riaz, Rehan M.</creator><creator>Nicolas, Joseph D.</creator><creator>Nelson, David</creator><creator>Hashmi, Sohaib Z.</creator><creator>Kaltz, Stuart R.</creator><creator>Earhart, Jeffrey S.</creator><creator>Merk, Bradley R.</creator><creator>McKee, Jeff S.</creator><creator>Bairstow, Shawn F.</creator><creator>Shah, Ramille N.</creator><creator>Hsu, Wellington K.</creator><creator>Stupp, Samuel I.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20150101</creationdate><title>Gel Scaffolds of BMP-2-Binding Peptide Amphiphile Nanofibers for Spinal Arthrodesis</title><author>Lee, Sungsoo S. ; Hsu, Erin L. ; Mendoza, Marco ; Ghodasra, Jason ; Nickoli, Michael S. ; Ashtekar, Amruta ; Polavarapu, Mahesh ; Babu, Jacob ; Riaz, Rehan M. ; Nicolas, Joseph D. ; Nelson, David ; Hashmi, Sohaib Z. ; Kaltz, Stuart R. ; Earhart, Jeffrey S. ; Merk, Bradley R. ; McKee, Jeff S. ; Bairstow, Shawn F. ; Shah, Ramille N. ; Hsu, Wellington K. ; Stupp, Samuel I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7459-160b27cba09b76660eeaaa416faacb3460d2bbf945209fbce0d93c337c43de1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>BMP-2 (bone morphogenetic protein-2)</topic><topic>Bone Morphogenetic Protein 2 - chemistry</topic><topic>Bone Morphogenetic Protein 2 - pharmacology</topic><topic>bone regeneration</topic><topic>Cell Line</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Growth factors</topic><topic>Implants, Experimental</topic><topic>Mice</topic><topic>Nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>Osteogenesis</topic><topic>peptide amphiphile</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Peptides - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Regenerative</topic><topic>regenerative medicine</topic><topic>Scaffolds</topic><topic>Self assembly</topic><topic>Spinal Diseases - therapy</topic><topic>Spinal Fusion</topic><topic>Stem cells</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sungsoo S.</creatorcontrib><creatorcontrib>Hsu, Erin L.</creatorcontrib><creatorcontrib>Mendoza, Marco</creatorcontrib><creatorcontrib>Ghodasra, Jason</creatorcontrib><creatorcontrib>Nickoli, Michael S.</creatorcontrib><creatorcontrib>Ashtekar, Amruta</creatorcontrib><creatorcontrib>Polavarapu, Mahesh</creatorcontrib><creatorcontrib>Babu, Jacob</creatorcontrib><creatorcontrib>Riaz, Rehan M.</creatorcontrib><creatorcontrib>Nicolas, Joseph D.</creatorcontrib><creatorcontrib>Nelson, David</creatorcontrib><creatorcontrib>Hashmi, Sohaib Z.</creatorcontrib><creatorcontrib>Kaltz, Stuart R.</creatorcontrib><creatorcontrib>Earhart, Jeffrey S.</creatorcontrib><creatorcontrib>Merk, Bradley R.</creatorcontrib><creatorcontrib>McKee, Jeff S.</creatorcontrib><creatorcontrib>Bairstow, Shawn F.</creatorcontrib><creatorcontrib>Shah, Ramille N.</creatorcontrib><creatorcontrib>Hsu, Wellington K.</creatorcontrib><creatorcontrib>Stupp, Samuel I.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sungsoo S.</au><au>Hsu, Erin L.</au><au>Mendoza, Marco</au><au>Ghodasra, Jason</au><au>Nickoli, Michael S.</au><au>Ashtekar, Amruta</au><au>Polavarapu, Mahesh</au><au>Babu, Jacob</au><au>Riaz, Rehan M.</au><au>Nicolas, Joseph D.</au><au>Nelson, David</au><au>Hashmi, Sohaib Z.</au><au>Kaltz, Stuart R.</au><au>Earhart, Jeffrey S.</au><au>Merk, Bradley R.</au><au>McKee, Jeff S.</au><au>Bairstow, Shawn F.</au><au>Shah, Ramille N.</au><au>Hsu, Wellington K.</au><au>Stupp, Samuel I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gel Scaffolds of BMP-2-Binding Peptide Amphiphile Nanofibers for Spinal Arthrodesis</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv. Healthcare Mater</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>4</volume><issue>1</issue><spage>131</spage><epage>141</epage><pages>131-141</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Peptide amphiphile (PA) nanofibers formed by self‐assembly can be customized for specific applications in regenerative medicine through the use of molecules that display bioactive signals on their surfaces. Here, the use of PA nanofibers with binding affinity for the bone promoting growth factor BMP‐2 to create a gel scaffold for osteogenesis is reported. With the objective of reducing the amount of BMP‐2 used clinically for successful arthrodesis in the spine, amounts of growth factor incorporated in the scaffolds that are 10 to 100 times lower than that those used clinically in collagen scaffolds are used. The efficacy of the bioactive PA system to promote BMP‐2‐induced osteogenesis in vivo is investigated in a rat posterolateral lumbar intertransverse spinal fusion model. PA nanofiber gels displaying BMP‐2‐binding segments exhibit superior spinal fusion rates relative to controls, effectively decreasing the required therapeutic dose of BMP‐2 by 10‐fold. Interestingly, a 42% fusion rate is observed for gels containing the bioactive nanofibers without the use of exogenous BMP‐2, suggesting the ability of the nanofiber to recruit endogenous growth factor. Results obtained here demonstrate that bioactive biomaterials with capacity to bind specific growth factors by design are great targets for regenerative medicine. Supramolecular nanofibers presenting BMP‐2‐binding epitopes on the surface exhibit superior spinal fusion rates in rats, effectively decreasing the therapeutic dose of BMP‐2 by 10‐fold. Importantly, the bioactive nanofibers elicit 42% fusion rate without the addition of exogenous BMP‐2.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>24753455</pmid><doi>10.1002/adhm.201400129</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2015-01, Vol.4 (1), p.131-141
issn 2192-2640
2192-2659
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4206675
source Wiley-Blackwell Read & Publish Collection
subjects Animals
Biocompatibility
Biomedical materials
BMP-2 (bone morphogenetic protein-2)
Bone Morphogenetic Protein 2 - chemistry
Bone Morphogenetic Protein 2 - pharmacology
bone regeneration
Cell Line
Disease Models, Animal
Female
Growth factors
Implants, Experimental
Mice
Nanofibers
Nanofibers - chemistry
Osteogenesis
peptide amphiphile
Peptides
Peptides - chemistry
Peptides - pharmacology
Rats
Rats, Sprague-Dawley
Regenerative
regenerative medicine
Scaffolds
Self assembly
Spinal Diseases - therapy
Spinal Fusion
Stem cells
Tissue Scaffolds - chemistry
title Gel Scaffolds of BMP-2-Binding Peptide Amphiphile Nanofibers for Spinal Arthrodesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gel%20Scaffolds%20of%20BMP-2-Binding%20Peptide%20Amphiphile%20Nanofibers%20for%20Spinal%20Arthrodesis&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Lee,%20Sungsoo%20S.&rft.date=2015-01-01&rft.volume=4&rft.issue=1&rft.spage=131&rft.epage=141&rft.pages=131-141&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201400129&rft_dat=%3Cproquest_pubme%3E3547165891%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c7459-160b27cba09b76660eeaaa416faacb3460d2bbf945209fbce0d93c337c43de1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1642489650&rft_id=info:pmid/24753455&rfr_iscdi=true