Loading…
Gel Scaffolds of BMP-2-Binding Peptide Amphiphile Nanofibers for Spinal Arthrodesis
Peptide amphiphile (PA) nanofibers formed by self‐assembly can be customized for specific applications in regenerative medicine through the use of molecules that display bioactive signals on their surfaces. Here, the use of PA nanofibers with binding affinity for the bone promoting growth factor BMP...
Saved in:
Published in: | Advanced healthcare materials 2015-01, Vol.4 (1), p.131-141 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c7459-160b27cba09b76660eeaaa416faacb3460d2bbf945209fbce0d93c337c43de1b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c7459-160b27cba09b76660eeaaa416faacb3460d2bbf945209fbce0d93c337c43de1b3 |
container_end_page | 141 |
container_issue | 1 |
container_start_page | 131 |
container_title | Advanced healthcare materials |
container_volume | 4 |
creator | Lee, Sungsoo S. Hsu, Erin L. Mendoza, Marco Ghodasra, Jason Nickoli, Michael S. Ashtekar, Amruta Polavarapu, Mahesh Babu, Jacob Riaz, Rehan M. Nicolas, Joseph D. Nelson, David Hashmi, Sohaib Z. Kaltz, Stuart R. Earhart, Jeffrey S. Merk, Bradley R. McKee, Jeff S. Bairstow, Shawn F. Shah, Ramille N. Hsu, Wellington K. Stupp, Samuel I. |
description | Peptide amphiphile (PA) nanofibers formed by self‐assembly can be customized for specific applications in regenerative medicine through the use of molecules that display bioactive signals on their surfaces. Here, the use of PA nanofibers with binding affinity for the bone promoting growth factor BMP‐2 to create a gel scaffold for osteogenesis is reported. With the objective of reducing the amount of BMP‐2 used clinically for successful arthrodesis in the spine, amounts of growth factor incorporated in the scaffolds that are 10 to 100 times lower than that those used clinically in collagen scaffolds are used. The efficacy of the bioactive PA system to promote BMP‐2‐induced osteogenesis in vivo is investigated in a rat posterolateral lumbar intertransverse spinal fusion model. PA nanofiber gels displaying BMP‐2‐binding segments exhibit superior spinal fusion rates relative to controls, effectively decreasing the required therapeutic dose of BMP‐2 by 10‐fold. Interestingly, a 42% fusion rate is observed for gels containing the bioactive nanofibers without the use of exogenous BMP‐2, suggesting the ability of the nanofiber to recruit endogenous growth factor. Results obtained here demonstrate that bioactive biomaterials with capacity to bind specific growth factors by design are great targets for regenerative medicine.
Supramolecular nanofibers presenting BMP‐2‐binding epitopes on the surface exhibit superior spinal fusion rates in rats, effectively decreasing the therapeutic dose of BMP‐2 by 10‐fold. Importantly, the bioactive nanofibers elicit 42% fusion rate without the addition of exogenous BMP‐2. |
doi_str_mv | 10.1002/adhm.201400129 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4206675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3547165891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7459-160b27cba09b76660eeaaa416faacb3460d2bbf945209fbce0d93c337c43de1b3</originalsourceid><addsrcrecordid>eNqFkUFvEzEQhS0EolXaK0e0EhcuG8Ze2xtfkNKWppXSUhEQR8v22o3LZr21N0D_PY5SVoVLrZFsab735JmH0BsMUwxAPqhmvZkSwBQAE_ECHRIsSEk4Ey_HN4UDdJzSHeTDGeYz_BodEFqzijJ2iFYL2xYro5wLbZOK4IqTq5uSlCe-a3x3W9zYfvCNLeabfu1ztba4Vl1wXtuYChdisep9p9piHod1DI1NPh2hV061yR4_3hP07fzT19OLcvl5cXk6X5ampkyUmIMmtdEKhK4552CtUopi7pQyuqIcGqK1E5QREE4bC42oTFXVhlaNxbqaoI97336rN7YxthuiamUf_UbFBxmUl_92Or-Wt-GnpAQ4zxuYoPePBjHcb20a5MYnY9tWdTZsk8Q1iJoAMP48ygUVeawZzui7_9C7sI15RzuKEjoTnEGmpnvKxJBStG78Nwa5S1fu0pVjulnw9um0I_43ywyIPfArp_TwjJ2cn11cPTUv91qfBvt71Kr4Q_K6qpn8fr2Q52LJv9CzWkL1B8TTvyE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642489650</pqid></control><display><type>article</type><title>Gel Scaffolds of BMP-2-Binding Peptide Amphiphile Nanofibers for Spinal Arthrodesis</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Lee, Sungsoo S. ; Hsu, Erin L. ; Mendoza, Marco ; Ghodasra, Jason ; Nickoli, Michael S. ; Ashtekar, Amruta ; Polavarapu, Mahesh ; Babu, Jacob ; Riaz, Rehan M. ; Nicolas, Joseph D. ; Nelson, David ; Hashmi, Sohaib Z. ; Kaltz, Stuart R. ; Earhart, Jeffrey S. ; Merk, Bradley R. ; McKee, Jeff S. ; Bairstow, Shawn F. ; Shah, Ramille N. ; Hsu, Wellington K. ; Stupp, Samuel I.</creator><creatorcontrib>Lee, Sungsoo S. ; Hsu, Erin L. ; Mendoza, Marco ; Ghodasra, Jason ; Nickoli, Michael S. ; Ashtekar, Amruta ; Polavarapu, Mahesh ; Babu, Jacob ; Riaz, Rehan M. ; Nicolas, Joseph D. ; Nelson, David ; Hashmi, Sohaib Z. ; Kaltz, Stuart R. ; Earhart, Jeffrey S. ; Merk, Bradley R. ; McKee, Jeff S. ; Bairstow, Shawn F. ; Shah, Ramille N. ; Hsu, Wellington K. ; Stupp, Samuel I.</creatorcontrib><description>Peptide amphiphile (PA) nanofibers formed by self‐assembly can be customized for specific applications in regenerative medicine through the use of molecules that display bioactive signals on their surfaces. Here, the use of PA nanofibers with binding affinity for the bone promoting growth factor BMP‐2 to create a gel scaffold for osteogenesis is reported. With the objective of reducing the amount of BMP‐2 used clinically for successful arthrodesis in the spine, amounts of growth factor incorporated in the scaffolds that are 10 to 100 times lower than that those used clinically in collagen scaffolds are used. The efficacy of the bioactive PA system to promote BMP‐2‐induced osteogenesis in vivo is investigated in a rat posterolateral lumbar intertransverse spinal fusion model. PA nanofiber gels displaying BMP‐2‐binding segments exhibit superior spinal fusion rates relative to controls, effectively decreasing the required therapeutic dose of BMP‐2 by 10‐fold. Interestingly, a 42% fusion rate is observed for gels containing the bioactive nanofibers without the use of exogenous BMP‐2, suggesting the ability of the nanofiber to recruit endogenous growth factor. Results obtained here demonstrate that bioactive biomaterials with capacity to bind specific growth factors by design are great targets for regenerative medicine.
Supramolecular nanofibers presenting BMP‐2‐binding epitopes on the surface exhibit superior spinal fusion rates in rats, effectively decreasing the therapeutic dose of BMP‐2 by 10‐fold. Importantly, the bioactive nanofibers elicit 42% fusion rate without the addition of exogenous BMP‐2.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201400129</identifier><identifier>PMID: 24753455</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Animals ; Biocompatibility ; Biomedical materials ; BMP-2 (bone morphogenetic protein-2) ; Bone Morphogenetic Protein 2 - chemistry ; Bone Morphogenetic Protein 2 - pharmacology ; bone regeneration ; Cell Line ; Disease Models, Animal ; Female ; Growth factors ; Implants, Experimental ; Mice ; Nanofibers ; Nanofibers - chemistry ; Osteogenesis ; peptide amphiphile ; Peptides ; Peptides - chemistry ; Peptides - pharmacology ; Rats ; Rats, Sprague-Dawley ; Regenerative ; regenerative medicine ; Scaffolds ; Self assembly ; Spinal Diseases - therapy ; Spinal Fusion ; Stem cells ; Tissue Scaffolds - chemistry</subject><ispartof>Advanced healthcare materials, 2015-01, Vol.4 (1), p.131-141</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7459-160b27cba09b76660eeaaa416faacb3460d2bbf945209fbce0d93c337c43de1b3</citedby><cites>FETCH-LOGICAL-c7459-160b27cba09b76660eeaaa416faacb3460d2bbf945209fbce0d93c337c43de1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24753455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sungsoo S.</creatorcontrib><creatorcontrib>Hsu, Erin L.</creatorcontrib><creatorcontrib>Mendoza, Marco</creatorcontrib><creatorcontrib>Ghodasra, Jason</creatorcontrib><creatorcontrib>Nickoli, Michael S.</creatorcontrib><creatorcontrib>Ashtekar, Amruta</creatorcontrib><creatorcontrib>Polavarapu, Mahesh</creatorcontrib><creatorcontrib>Babu, Jacob</creatorcontrib><creatorcontrib>Riaz, Rehan M.</creatorcontrib><creatorcontrib>Nicolas, Joseph D.</creatorcontrib><creatorcontrib>Nelson, David</creatorcontrib><creatorcontrib>Hashmi, Sohaib Z.</creatorcontrib><creatorcontrib>Kaltz, Stuart R.</creatorcontrib><creatorcontrib>Earhart, Jeffrey S.</creatorcontrib><creatorcontrib>Merk, Bradley R.</creatorcontrib><creatorcontrib>McKee, Jeff S.</creatorcontrib><creatorcontrib>Bairstow, Shawn F.</creatorcontrib><creatorcontrib>Shah, Ramille N.</creatorcontrib><creatorcontrib>Hsu, Wellington K.</creatorcontrib><creatorcontrib>Stupp, Samuel I.</creatorcontrib><title>Gel Scaffolds of BMP-2-Binding Peptide Amphiphile Nanofibers for Spinal Arthrodesis</title><title>Advanced healthcare materials</title><addtitle>Adv. Healthcare Mater</addtitle><description>Peptide amphiphile (PA) nanofibers formed by self‐assembly can be customized for specific applications in regenerative medicine through the use of molecules that display bioactive signals on their surfaces. Here, the use of PA nanofibers with binding affinity for the bone promoting growth factor BMP‐2 to create a gel scaffold for osteogenesis is reported. With the objective of reducing the amount of BMP‐2 used clinically for successful arthrodesis in the spine, amounts of growth factor incorporated in the scaffolds that are 10 to 100 times lower than that those used clinically in collagen scaffolds are used. The efficacy of the bioactive PA system to promote BMP‐2‐induced osteogenesis in vivo is investigated in a rat posterolateral lumbar intertransverse spinal fusion model. PA nanofiber gels displaying BMP‐2‐binding segments exhibit superior spinal fusion rates relative to controls, effectively decreasing the required therapeutic dose of BMP‐2 by 10‐fold. Interestingly, a 42% fusion rate is observed for gels containing the bioactive nanofibers without the use of exogenous BMP‐2, suggesting the ability of the nanofiber to recruit endogenous growth factor. Results obtained here demonstrate that bioactive biomaterials with capacity to bind specific growth factors by design are great targets for regenerative medicine.
Supramolecular nanofibers presenting BMP‐2‐binding epitopes on the surface exhibit superior spinal fusion rates in rats, effectively decreasing the therapeutic dose of BMP‐2 by 10‐fold. Importantly, the bioactive nanofibers elicit 42% fusion rate without the addition of exogenous BMP‐2.</description><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>BMP-2 (bone morphogenetic protein-2)</subject><subject>Bone Morphogenetic Protein 2 - chemistry</subject><subject>Bone Morphogenetic Protein 2 - pharmacology</subject><subject>bone regeneration</subject><subject>Cell Line</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Growth factors</subject><subject>Implants, Experimental</subject><subject>Mice</subject><subject>Nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>Osteogenesis</subject><subject>peptide amphiphile</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Peptides - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Regenerative</subject><subject>regenerative medicine</subject><subject>Scaffolds</subject><subject>Self assembly</subject><subject>Spinal Diseases - therapy</subject><subject>Spinal Fusion</subject><subject>Stem cells</subject><subject>Tissue Scaffolds - chemistry</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkUFvEzEQhS0EolXaK0e0EhcuG8Ze2xtfkNKWppXSUhEQR8v22o3LZr21N0D_PY5SVoVLrZFsab735JmH0BsMUwxAPqhmvZkSwBQAE_ECHRIsSEk4Ey_HN4UDdJzSHeTDGeYz_BodEFqzijJ2iFYL2xYro5wLbZOK4IqTq5uSlCe-a3x3W9zYfvCNLeabfu1ztba4Vl1wXtuYChdisep9p9piHod1DI1NPh2hV061yR4_3hP07fzT19OLcvl5cXk6X5ampkyUmIMmtdEKhK4552CtUopi7pQyuqIcGqK1E5QREE4bC42oTFXVhlaNxbqaoI97336rN7YxthuiamUf_UbFBxmUl_92Or-Wt-GnpAQ4zxuYoPePBjHcb20a5MYnY9tWdTZsk8Q1iJoAMP48ygUVeawZzui7_9C7sI15RzuKEjoTnEGmpnvKxJBStG78Nwa5S1fu0pVjulnw9um0I_43ywyIPfArp_TwjJ2cn11cPTUv91qfBvt71Kr4Q_K6qpn8fr2Q52LJv9CzWkL1B8TTvyE</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Lee, Sungsoo S.</creator><creator>Hsu, Erin L.</creator><creator>Mendoza, Marco</creator><creator>Ghodasra, Jason</creator><creator>Nickoli, Michael S.</creator><creator>Ashtekar, Amruta</creator><creator>Polavarapu, Mahesh</creator><creator>Babu, Jacob</creator><creator>Riaz, Rehan M.</creator><creator>Nicolas, Joseph D.</creator><creator>Nelson, David</creator><creator>Hashmi, Sohaib Z.</creator><creator>Kaltz, Stuart R.</creator><creator>Earhart, Jeffrey S.</creator><creator>Merk, Bradley R.</creator><creator>McKee, Jeff S.</creator><creator>Bairstow, Shawn F.</creator><creator>Shah, Ramille N.</creator><creator>Hsu, Wellington K.</creator><creator>Stupp, Samuel I.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20150101</creationdate><title>Gel Scaffolds of BMP-2-Binding Peptide Amphiphile Nanofibers for Spinal Arthrodesis</title><author>Lee, Sungsoo S. ; Hsu, Erin L. ; Mendoza, Marco ; Ghodasra, Jason ; Nickoli, Michael S. ; Ashtekar, Amruta ; Polavarapu, Mahesh ; Babu, Jacob ; Riaz, Rehan M. ; Nicolas, Joseph D. ; Nelson, David ; Hashmi, Sohaib Z. ; Kaltz, Stuart R. ; Earhart, Jeffrey S. ; Merk, Bradley R. ; McKee, Jeff S. ; Bairstow, Shawn F. ; Shah, Ramille N. ; Hsu, Wellington K. ; Stupp, Samuel I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7459-160b27cba09b76660eeaaa416faacb3460d2bbf945209fbce0d93c337c43de1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>BMP-2 (bone morphogenetic protein-2)</topic><topic>Bone Morphogenetic Protein 2 - chemistry</topic><topic>Bone Morphogenetic Protein 2 - pharmacology</topic><topic>bone regeneration</topic><topic>Cell Line</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Growth factors</topic><topic>Implants, Experimental</topic><topic>Mice</topic><topic>Nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>Osteogenesis</topic><topic>peptide amphiphile</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Peptides - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Regenerative</topic><topic>regenerative medicine</topic><topic>Scaffolds</topic><topic>Self assembly</topic><topic>Spinal Diseases - therapy</topic><topic>Spinal Fusion</topic><topic>Stem cells</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sungsoo S.</creatorcontrib><creatorcontrib>Hsu, Erin L.</creatorcontrib><creatorcontrib>Mendoza, Marco</creatorcontrib><creatorcontrib>Ghodasra, Jason</creatorcontrib><creatorcontrib>Nickoli, Michael S.</creatorcontrib><creatorcontrib>Ashtekar, Amruta</creatorcontrib><creatorcontrib>Polavarapu, Mahesh</creatorcontrib><creatorcontrib>Babu, Jacob</creatorcontrib><creatorcontrib>Riaz, Rehan M.</creatorcontrib><creatorcontrib>Nicolas, Joseph D.</creatorcontrib><creatorcontrib>Nelson, David</creatorcontrib><creatorcontrib>Hashmi, Sohaib Z.</creatorcontrib><creatorcontrib>Kaltz, Stuart R.</creatorcontrib><creatorcontrib>Earhart, Jeffrey S.</creatorcontrib><creatorcontrib>Merk, Bradley R.</creatorcontrib><creatorcontrib>McKee, Jeff S.</creatorcontrib><creatorcontrib>Bairstow, Shawn F.</creatorcontrib><creatorcontrib>Shah, Ramille N.</creatorcontrib><creatorcontrib>Hsu, Wellington K.</creatorcontrib><creatorcontrib>Stupp, Samuel I.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sungsoo S.</au><au>Hsu, Erin L.</au><au>Mendoza, Marco</au><au>Ghodasra, Jason</au><au>Nickoli, Michael S.</au><au>Ashtekar, Amruta</au><au>Polavarapu, Mahesh</au><au>Babu, Jacob</au><au>Riaz, Rehan M.</au><au>Nicolas, Joseph D.</au><au>Nelson, David</au><au>Hashmi, Sohaib Z.</au><au>Kaltz, Stuart R.</au><au>Earhart, Jeffrey S.</au><au>Merk, Bradley R.</au><au>McKee, Jeff S.</au><au>Bairstow, Shawn F.</au><au>Shah, Ramille N.</au><au>Hsu, Wellington K.</au><au>Stupp, Samuel I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gel Scaffolds of BMP-2-Binding Peptide Amphiphile Nanofibers for Spinal Arthrodesis</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv. Healthcare Mater</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>4</volume><issue>1</issue><spage>131</spage><epage>141</epage><pages>131-141</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Peptide amphiphile (PA) nanofibers formed by self‐assembly can be customized for specific applications in regenerative medicine through the use of molecules that display bioactive signals on their surfaces. Here, the use of PA nanofibers with binding affinity for the bone promoting growth factor BMP‐2 to create a gel scaffold for osteogenesis is reported. With the objective of reducing the amount of BMP‐2 used clinically for successful arthrodesis in the spine, amounts of growth factor incorporated in the scaffolds that are 10 to 100 times lower than that those used clinically in collagen scaffolds are used. The efficacy of the bioactive PA system to promote BMP‐2‐induced osteogenesis in vivo is investigated in a rat posterolateral lumbar intertransverse spinal fusion model. PA nanofiber gels displaying BMP‐2‐binding segments exhibit superior spinal fusion rates relative to controls, effectively decreasing the required therapeutic dose of BMP‐2 by 10‐fold. Interestingly, a 42% fusion rate is observed for gels containing the bioactive nanofibers without the use of exogenous BMP‐2, suggesting the ability of the nanofiber to recruit endogenous growth factor. Results obtained here demonstrate that bioactive biomaterials with capacity to bind specific growth factors by design are great targets for regenerative medicine.
Supramolecular nanofibers presenting BMP‐2‐binding epitopes on the surface exhibit superior spinal fusion rates in rats, effectively decreasing the therapeutic dose of BMP‐2 by 10‐fold. Importantly, the bioactive nanofibers elicit 42% fusion rate without the addition of exogenous BMP‐2.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>24753455</pmid><doi>10.1002/adhm.201400129</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2015-01, Vol.4 (1), p.131-141 |
issn | 2192-2640 2192-2659 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4206675 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animals Biocompatibility Biomedical materials BMP-2 (bone morphogenetic protein-2) Bone Morphogenetic Protein 2 - chemistry Bone Morphogenetic Protein 2 - pharmacology bone regeneration Cell Line Disease Models, Animal Female Growth factors Implants, Experimental Mice Nanofibers Nanofibers - chemistry Osteogenesis peptide amphiphile Peptides Peptides - chemistry Peptides - pharmacology Rats Rats, Sprague-Dawley Regenerative regenerative medicine Scaffolds Self assembly Spinal Diseases - therapy Spinal Fusion Stem cells Tissue Scaffolds - chemistry |
title | Gel Scaffolds of BMP-2-Binding Peptide Amphiphile Nanofibers for Spinal Arthrodesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gel%20Scaffolds%20of%20BMP-2-Binding%20Peptide%20Amphiphile%20Nanofibers%20for%20Spinal%20Arthrodesis&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Lee,%20Sungsoo%20S.&rft.date=2015-01-01&rft.volume=4&rft.issue=1&rft.spage=131&rft.epage=141&rft.pages=131-141&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201400129&rft_dat=%3Cproquest_pubme%3E3547165891%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c7459-160b27cba09b76660eeaaa416faacb3460d2bbf945209fbce0d93c337c43de1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1642489650&rft_id=info:pmid/24753455&rfr_iscdi=true |