Loading…
Reinforced Pericardium as a Hybrid Material for Cardiovascular Applications
Pericardium-based cardiovascular devices are currently bound by a 10-year maximum lifetime due to detrimental calcification and degradation. The goal of this work is to develop a novel synthetic material to create a lasting replacement for malfunctioning or diseased tissue in the cardiovascular syst...
Saved in:
Published in: | Tissue engineering. Part A 2014-11, Vol.20 (21-22), p.287-2816 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c508t-b3862bd1a7bab558a297ec902e206100ebbe2694a7778f9806dbd5e26fe6116d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c508t-b3862bd1a7bab558a297ec902e206100ebbe2694a7778f9806dbd5e26fe6116d3 |
container_end_page | 2816 |
container_issue | 21-22 |
container_start_page | 287 |
container_title | Tissue engineering. Part A |
container_volume | 20 |
creator | Bracaglia, Laura G. Yu, Li Hibino, Narutoshi Fisher, John P. |
description | Pericardium-based cardiovascular devices are currently bound by a 10-year maximum lifetime due to detrimental calcification and degradation. The goal of this work is to develop a novel synthetic material to create a lasting replacement for malfunctioning or diseased tissue in the cardiovascular system. This study couples poly(propylene fumarate) (PPF) and a natural biomaterial together in an unprecedented hybrid composite and evaluates the composite versus the standard glutaraldehyde-treated tissue. The polymer reinforcement is hypothesized to provide initial physical protection from proteolytic enzymes and degradation, but leave the original collagen and elastin matrix unaltered. The calcification rate and durability of the hybrid material are evaluated
in vitro
and in an
in vivo
subdermal animal model. Results demonstrate that PPF is an effective support and leads to significantly less calcium deposition, important metrics when evaluating cardiovascular material. By avoiding chemical crosslinking of the tissue and associated side effects, PPF-reinforced pericardium as a biohybrid material offers a promising potential direction for further development in cardiovascular material alternatives. Eliminating the basis for the majority of cardiovascular prosthetic failures could revolutionize expectations for extent of cardiovascular repair. |
doi_str_mv | 10.1089/ten.tea.2014.0516 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4229701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1625343627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-b3862bd1a7bab558a297ec902e206100ebbe2694a7778f9806dbd5e26fe6116d3</originalsourceid><addsrcrecordid>eNqNkUtr3DAUhUVpaZJpf0A3xdBNNjPVw3p4EwhDXiSlpbTQnbiyr1sFjzSR7ED-fWQmGdqushAS937nSLqHkA-Mrhg1zecRw2pEWHHK6hWVTL0ih6wReimE_PV6f67ZATnK-ZZSRZXWb8kBl1yoWjSH5Po7-tDH1GJXfcPkW0idnzYV5AqqyweXfFd9gbF0YKgKV61nIN5DbqcBUnW63Q5FNPoY8jvypoch4_unfUF-np_9WF8ub75eXK1Pb5atpGZcOmEUdx0D7cBJaYA3GtuGcuRUMUrROeSqqUFrbfrGUNW5TpZSj4ox1YkFOdn5bie3wa7FMCYY7Db5DaQHG8HbfzvB_7G_472tebmKsmJw_GSQ4t2EebQbn1scBggYp2yZEpJyZZR6AcqlqIXiuqCf_kNv45RCmcRMcSONLDNfELaj2hRzTtjv382onVO1JdWywM6p2jnVovn494f3iucYC6B3wFyGEAaPDtP4AutHOcmyKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622858564</pqid></control><display><type>article</type><title>Reinforced Pericardium as a Hybrid Material for Cardiovascular Applications</title><source>Mary Ann Liebert Online Subscription</source><creator>Bracaglia, Laura G. ; Yu, Li ; Hibino, Narutoshi ; Fisher, John P.</creator><creatorcontrib>Bracaglia, Laura G. ; Yu, Li ; Hibino, Narutoshi ; Fisher, John P.</creatorcontrib><description>Pericardium-based cardiovascular devices are currently bound by a 10-year maximum lifetime due to detrimental calcification and degradation. The goal of this work is to develop a novel synthetic material to create a lasting replacement for malfunctioning or diseased tissue in the cardiovascular system. This study couples poly(propylene fumarate) (PPF) and a natural biomaterial together in an unprecedented hybrid composite and evaluates the composite versus the standard glutaraldehyde-treated tissue. The polymer reinforcement is hypothesized to provide initial physical protection from proteolytic enzymes and degradation, but leave the original collagen and elastin matrix unaltered. The calcification rate and durability of the hybrid material are evaluated
in vitro
and in an
in vivo
subdermal animal model. Results demonstrate that PPF is an effective support and leads to significantly less calcium deposition, important metrics when evaluating cardiovascular material. By avoiding chemical crosslinking of the tissue and associated side effects, PPF-reinforced pericardium as a biohybrid material offers a promising potential direction for further development in cardiovascular material alternatives. Eliminating the basis for the majority of cardiovascular prosthetic failures could revolutionize expectations for extent of cardiovascular repair.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2014.0516</identifier><identifier>PMID: 25236439</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Biomedical materials ; Bioprosthesis ; Cardiovascular system ; Compressive Strength - physiology ; Elastic Modulus - physiology ; Equipment Failure Analysis ; Fumarates - chemistry ; Male ; Materials Testing ; Original ; Original Articles ; Pericardium - immunology ; Pericardium - transplantation ; Polymers ; Polypropylenes - chemistry ; Prosthesis Design ; Rats ; Rats, Sprague-Dawley ; Stress, Mechanical ; Tensile Strength - physiology ; Tissue engineering ; Tissue Scaffolds</subject><ispartof>Tissue engineering. Part A, 2014-11, Vol.20 (21-22), p.287-2816</ispartof><rights>2014, Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2014, Mary Ann Liebert, Inc.</rights><rights>Copyright 2014, Mary Ann Liebert, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-b3862bd1a7bab558a297ec902e206100ebbe2694a7778f9806dbd5e26fe6116d3</citedby><cites>FETCH-LOGICAL-c508t-b3862bd1a7bab558a297ec902e206100ebbe2694a7778f9806dbd5e26fe6116d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.liebertpub.com/doi/epdf/10.1089/ten.tea.2014.0516$$EPDF$$P50$$Gmaryannliebert$$H</linktopdf><linktohtml>$$Uhttps://www.liebertpub.com/doi/full/10.1089/ten.tea.2014.0516$$EHTML$$P50$$Gmaryannliebert$$H</linktohtml><link.rule.ids>230,314,780,784,885,3042,21723,27924,27925,55291,55303</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25236439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bracaglia, Laura G.</creatorcontrib><creatorcontrib>Yu, Li</creatorcontrib><creatorcontrib>Hibino, Narutoshi</creatorcontrib><creatorcontrib>Fisher, John P.</creatorcontrib><title>Reinforced Pericardium as a Hybrid Material for Cardiovascular Applications</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>Pericardium-based cardiovascular devices are currently bound by a 10-year maximum lifetime due to detrimental calcification and degradation. The goal of this work is to develop a novel synthetic material to create a lasting replacement for malfunctioning or diseased tissue in the cardiovascular system. This study couples poly(propylene fumarate) (PPF) and a natural biomaterial together in an unprecedented hybrid composite and evaluates the composite versus the standard glutaraldehyde-treated tissue. The polymer reinforcement is hypothesized to provide initial physical protection from proteolytic enzymes and degradation, but leave the original collagen and elastin matrix unaltered. The calcification rate and durability of the hybrid material are evaluated
in vitro
and in an
in vivo
subdermal animal model. Results demonstrate that PPF is an effective support and leads to significantly less calcium deposition, important metrics when evaluating cardiovascular material. By avoiding chemical crosslinking of the tissue and associated side effects, PPF-reinforced pericardium as a biohybrid material offers a promising potential direction for further development in cardiovascular material alternatives. Eliminating the basis for the majority of cardiovascular prosthetic failures could revolutionize expectations for extent of cardiovascular repair.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomedical materials</subject><subject>Bioprosthesis</subject><subject>Cardiovascular system</subject><subject>Compressive Strength - physiology</subject><subject>Elastic Modulus - physiology</subject><subject>Equipment Failure Analysis</subject><subject>Fumarates - chemistry</subject><subject>Male</subject><subject>Materials Testing</subject><subject>Original</subject><subject>Original Articles</subject><subject>Pericardium - immunology</subject><subject>Pericardium - transplantation</subject><subject>Polymers</subject><subject>Polypropylenes - chemistry</subject><subject>Prosthesis Design</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Stress, Mechanical</subject><subject>Tensile Strength - physiology</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkUtr3DAUhUVpaZJpf0A3xdBNNjPVw3p4EwhDXiSlpbTQnbiyr1sFjzSR7ED-fWQmGdqushAS937nSLqHkA-Mrhg1zecRw2pEWHHK6hWVTL0ih6wReimE_PV6f67ZATnK-ZZSRZXWb8kBl1yoWjSH5Po7-tDH1GJXfcPkW0idnzYV5AqqyweXfFd9gbF0YKgKV61nIN5DbqcBUnW63Q5FNPoY8jvypoch4_unfUF-np_9WF8ub75eXK1Pb5atpGZcOmEUdx0D7cBJaYA3GtuGcuRUMUrROeSqqUFrbfrGUNW5TpZSj4ox1YkFOdn5bie3wa7FMCYY7Db5DaQHG8HbfzvB_7G_472tebmKsmJw_GSQ4t2EebQbn1scBggYp2yZEpJyZZR6AcqlqIXiuqCf_kNv45RCmcRMcSONLDNfELaj2hRzTtjv382onVO1JdWywM6p2jnVovn494f3iucYC6B3wFyGEAaPDtP4AutHOcmyKA</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Bracaglia, Laura G.</creator><creator>Yu, Li</creator><creator>Hibino, Narutoshi</creator><creator>Fisher, John P.</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20141101</creationdate><title>Reinforced Pericardium as a Hybrid Material for Cardiovascular Applications</title><author>Bracaglia, Laura G. ; Yu, Li ; Hibino, Narutoshi ; Fisher, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-b3862bd1a7bab558a297ec902e206100ebbe2694a7778f9806dbd5e26fe6116d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomedical materials</topic><topic>Bioprosthesis</topic><topic>Cardiovascular system</topic><topic>Compressive Strength - physiology</topic><topic>Elastic Modulus - physiology</topic><topic>Equipment Failure Analysis</topic><topic>Fumarates - chemistry</topic><topic>Male</topic><topic>Materials Testing</topic><topic>Original</topic><topic>Original Articles</topic><topic>Pericardium - immunology</topic><topic>Pericardium - transplantation</topic><topic>Polymers</topic><topic>Polypropylenes - chemistry</topic><topic>Prosthesis Design</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Stress, Mechanical</topic><topic>Tensile Strength - physiology</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bracaglia, Laura G.</creatorcontrib><creatorcontrib>Yu, Li</creatorcontrib><creatorcontrib>Hibino, Narutoshi</creatorcontrib><creatorcontrib>Fisher, John P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bracaglia, Laura G.</au><au>Yu, Li</au><au>Hibino, Narutoshi</au><au>Fisher, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforced Pericardium as a Hybrid Material for Cardiovascular Applications</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>20</volume><issue>21-22</issue><spage>287</spage><epage>2816</epage><pages>287-2816</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>Pericardium-based cardiovascular devices are currently bound by a 10-year maximum lifetime due to detrimental calcification and degradation. The goal of this work is to develop a novel synthetic material to create a lasting replacement for malfunctioning or diseased tissue in the cardiovascular system. This study couples poly(propylene fumarate) (PPF) and a natural biomaterial together in an unprecedented hybrid composite and evaluates the composite versus the standard glutaraldehyde-treated tissue. The polymer reinforcement is hypothesized to provide initial physical protection from proteolytic enzymes and degradation, but leave the original collagen and elastin matrix unaltered. The calcification rate and durability of the hybrid material are evaluated
in vitro
and in an
in vivo
subdermal animal model. Results demonstrate that PPF is an effective support and leads to significantly less calcium deposition, important metrics when evaluating cardiovascular material. By avoiding chemical crosslinking of the tissue and associated side effects, PPF-reinforced pericardium as a biohybrid material offers a promising potential direction for further development in cardiovascular material alternatives. Eliminating the basis for the majority of cardiovascular prosthetic failures could revolutionize expectations for extent of cardiovascular repair.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>25236439</pmid><doi>10.1089/ten.tea.2014.0516</doi><tpages>2530</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-3341 |
ispartof | Tissue engineering. Part A, 2014-11, Vol.20 (21-22), p.287-2816 |
issn | 1937-3341 1937-335X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4229701 |
source | Mary Ann Liebert Online Subscription |
subjects | Animals Biocompatible Materials - chemistry Biomedical materials Bioprosthesis Cardiovascular system Compressive Strength - physiology Elastic Modulus - physiology Equipment Failure Analysis Fumarates - chemistry Male Materials Testing Original Original Articles Pericardium - immunology Pericardium - transplantation Polymers Polypropylenes - chemistry Prosthesis Design Rats Rats, Sprague-Dawley Stress, Mechanical Tensile Strength - physiology Tissue engineering Tissue Scaffolds |
title | Reinforced Pericardium as a Hybrid Material for Cardiovascular Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforced%20Pericardium%20as%20a%20Hybrid%20Material%20for%20Cardiovascular%20Applications&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Bracaglia,%20Laura%20G.&rft.date=2014-11-01&rft.volume=20&rft.issue=21-22&rft.spage=287&rft.epage=2816&rft.pages=287-2816&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2014.0516&rft_dat=%3Cproquest_pubme%3E1625343627%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-b3862bd1a7bab558a297ec902e206100ebbe2694a7778f9806dbd5e26fe6116d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1622858564&rft_id=info:pmid/25236439&rfr_iscdi=true |