Loading…

Reinforced Pericardium as a Hybrid Material for Cardiovascular Applications

Pericardium-based cardiovascular devices are currently bound by a 10-year maximum lifetime due to detrimental calcification and degradation. The goal of this work is to develop a novel synthetic material to create a lasting replacement for malfunctioning or diseased tissue in the cardiovascular syst...

Full description

Saved in:
Bibliographic Details
Published in:Tissue engineering. Part A 2014-11, Vol.20 (21-22), p.287-2816
Main Authors: Bracaglia, Laura G., Yu, Li, Hibino, Narutoshi, Fisher, John P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c508t-b3862bd1a7bab558a297ec902e206100ebbe2694a7778f9806dbd5e26fe6116d3
cites cdi_FETCH-LOGICAL-c508t-b3862bd1a7bab558a297ec902e206100ebbe2694a7778f9806dbd5e26fe6116d3
container_end_page 2816
container_issue 21-22
container_start_page 287
container_title Tissue engineering. Part A
container_volume 20
creator Bracaglia, Laura G.
Yu, Li
Hibino, Narutoshi
Fisher, John P.
description Pericardium-based cardiovascular devices are currently bound by a 10-year maximum lifetime due to detrimental calcification and degradation. The goal of this work is to develop a novel synthetic material to create a lasting replacement for malfunctioning or diseased tissue in the cardiovascular system. This study couples poly(propylene fumarate) (PPF) and a natural biomaterial together in an unprecedented hybrid composite and evaluates the composite versus the standard glutaraldehyde-treated tissue. The polymer reinforcement is hypothesized to provide initial physical protection from proteolytic enzymes and degradation, but leave the original collagen and elastin matrix unaltered. The calcification rate and durability of the hybrid material are evaluated in vitro and in an in vivo subdermal animal model. Results demonstrate that PPF is an effective support and leads to significantly less calcium deposition, important metrics when evaluating cardiovascular material. By avoiding chemical crosslinking of the tissue and associated side effects, PPF-reinforced pericardium as a biohybrid material offers a promising potential direction for further development in cardiovascular material alternatives. Eliminating the basis for the majority of cardiovascular prosthetic failures could revolutionize expectations for extent of cardiovascular repair.
doi_str_mv 10.1089/ten.tea.2014.0516
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4229701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1625343627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-b3862bd1a7bab558a297ec902e206100ebbe2694a7778f9806dbd5e26fe6116d3</originalsourceid><addsrcrecordid>eNqNkUtr3DAUhUVpaZJpf0A3xdBNNjPVw3p4EwhDXiSlpbTQnbiyr1sFjzSR7ED-fWQmGdqushAS937nSLqHkA-Mrhg1zecRw2pEWHHK6hWVTL0ih6wReimE_PV6f67ZATnK-ZZSRZXWb8kBl1yoWjSH5Po7-tDH1GJXfcPkW0idnzYV5AqqyweXfFd9gbF0YKgKV61nIN5DbqcBUnW63Q5FNPoY8jvypoch4_unfUF-np_9WF8ub75eXK1Pb5atpGZcOmEUdx0D7cBJaYA3GtuGcuRUMUrROeSqqUFrbfrGUNW5TpZSj4ox1YkFOdn5bie3wa7FMCYY7Db5DaQHG8HbfzvB_7G_472tebmKsmJw_GSQ4t2EebQbn1scBggYp2yZEpJyZZR6AcqlqIXiuqCf_kNv45RCmcRMcSONLDNfELaj2hRzTtjv382onVO1JdWywM6p2jnVovn494f3iucYC6B3wFyGEAaPDtP4AutHOcmyKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622858564</pqid></control><display><type>article</type><title>Reinforced Pericardium as a Hybrid Material for Cardiovascular Applications</title><source>Mary Ann Liebert Online Subscription</source><creator>Bracaglia, Laura G. ; Yu, Li ; Hibino, Narutoshi ; Fisher, John P.</creator><creatorcontrib>Bracaglia, Laura G. ; Yu, Li ; Hibino, Narutoshi ; Fisher, John P.</creatorcontrib><description>Pericardium-based cardiovascular devices are currently bound by a 10-year maximum lifetime due to detrimental calcification and degradation. The goal of this work is to develop a novel synthetic material to create a lasting replacement for malfunctioning or diseased tissue in the cardiovascular system. This study couples poly(propylene fumarate) (PPF) and a natural biomaterial together in an unprecedented hybrid composite and evaluates the composite versus the standard glutaraldehyde-treated tissue. The polymer reinforcement is hypothesized to provide initial physical protection from proteolytic enzymes and degradation, but leave the original collagen and elastin matrix unaltered. The calcification rate and durability of the hybrid material are evaluated in vitro and in an in vivo subdermal animal model. Results demonstrate that PPF is an effective support and leads to significantly less calcium deposition, important metrics when evaluating cardiovascular material. By avoiding chemical crosslinking of the tissue and associated side effects, PPF-reinforced pericardium as a biohybrid material offers a promising potential direction for further development in cardiovascular material alternatives. Eliminating the basis for the majority of cardiovascular prosthetic failures could revolutionize expectations for extent of cardiovascular repair.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2014.0516</identifier><identifier>PMID: 25236439</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Biomedical materials ; Bioprosthesis ; Cardiovascular system ; Compressive Strength - physiology ; Elastic Modulus - physiology ; Equipment Failure Analysis ; Fumarates - chemistry ; Male ; Materials Testing ; Original ; Original Articles ; Pericardium - immunology ; Pericardium - transplantation ; Polymers ; Polypropylenes - chemistry ; Prosthesis Design ; Rats ; Rats, Sprague-Dawley ; Stress, Mechanical ; Tensile Strength - physiology ; Tissue engineering ; Tissue Scaffolds</subject><ispartof>Tissue engineering. Part A, 2014-11, Vol.20 (21-22), p.287-2816</ispartof><rights>2014, Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2014, Mary Ann Liebert, Inc.</rights><rights>Copyright 2014, Mary Ann Liebert, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-b3862bd1a7bab558a297ec902e206100ebbe2694a7778f9806dbd5e26fe6116d3</citedby><cites>FETCH-LOGICAL-c508t-b3862bd1a7bab558a297ec902e206100ebbe2694a7778f9806dbd5e26fe6116d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.liebertpub.com/doi/epdf/10.1089/ten.tea.2014.0516$$EPDF$$P50$$Gmaryannliebert$$H</linktopdf><linktohtml>$$Uhttps://www.liebertpub.com/doi/full/10.1089/ten.tea.2014.0516$$EHTML$$P50$$Gmaryannliebert$$H</linktohtml><link.rule.ids>230,314,780,784,885,3042,21723,27924,27925,55291,55303</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25236439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bracaglia, Laura G.</creatorcontrib><creatorcontrib>Yu, Li</creatorcontrib><creatorcontrib>Hibino, Narutoshi</creatorcontrib><creatorcontrib>Fisher, John P.</creatorcontrib><title>Reinforced Pericardium as a Hybrid Material for Cardiovascular Applications</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>Pericardium-based cardiovascular devices are currently bound by a 10-year maximum lifetime due to detrimental calcification and degradation. The goal of this work is to develop a novel synthetic material to create a lasting replacement for malfunctioning or diseased tissue in the cardiovascular system. This study couples poly(propylene fumarate) (PPF) and a natural biomaterial together in an unprecedented hybrid composite and evaluates the composite versus the standard glutaraldehyde-treated tissue. The polymer reinforcement is hypothesized to provide initial physical protection from proteolytic enzymes and degradation, but leave the original collagen and elastin matrix unaltered. The calcification rate and durability of the hybrid material are evaluated in vitro and in an in vivo subdermal animal model. Results demonstrate that PPF is an effective support and leads to significantly less calcium deposition, important metrics when evaluating cardiovascular material. By avoiding chemical crosslinking of the tissue and associated side effects, PPF-reinforced pericardium as a biohybrid material offers a promising potential direction for further development in cardiovascular material alternatives. Eliminating the basis for the majority of cardiovascular prosthetic failures could revolutionize expectations for extent of cardiovascular repair.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomedical materials</subject><subject>Bioprosthesis</subject><subject>Cardiovascular system</subject><subject>Compressive Strength - physiology</subject><subject>Elastic Modulus - physiology</subject><subject>Equipment Failure Analysis</subject><subject>Fumarates - chemistry</subject><subject>Male</subject><subject>Materials Testing</subject><subject>Original</subject><subject>Original Articles</subject><subject>Pericardium - immunology</subject><subject>Pericardium - transplantation</subject><subject>Polymers</subject><subject>Polypropylenes - chemistry</subject><subject>Prosthesis Design</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Stress, Mechanical</subject><subject>Tensile Strength - physiology</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkUtr3DAUhUVpaZJpf0A3xdBNNjPVw3p4EwhDXiSlpbTQnbiyr1sFjzSR7ED-fWQmGdqushAS937nSLqHkA-Mrhg1zecRw2pEWHHK6hWVTL0ih6wReimE_PV6f67ZATnK-ZZSRZXWb8kBl1yoWjSH5Po7-tDH1GJXfcPkW0idnzYV5AqqyweXfFd9gbF0YKgKV61nIN5DbqcBUnW63Q5FNPoY8jvypoch4_unfUF-np_9WF8ub75eXK1Pb5atpGZcOmEUdx0D7cBJaYA3GtuGcuRUMUrROeSqqUFrbfrGUNW5TpZSj4ox1YkFOdn5bie3wa7FMCYY7Db5DaQHG8HbfzvB_7G_472tebmKsmJw_GSQ4t2EebQbn1scBggYp2yZEpJyZZR6AcqlqIXiuqCf_kNv45RCmcRMcSONLDNfELaj2hRzTtjv382onVO1JdWywM6p2jnVovn494f3iucYC6B3wFyGEAaPDtP4AutHOcmyKA</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Bracaglia, Laura G.</creator><creator>Yu, Li</creator><creator>Hibino, Narutoshi</creator><creator>Fisher, John P.</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20141101</creationdate><title>Reinforced Pericardium as a Hybrid Material for Cardiovascular Applications</title><author>Bracaglia, Laura G. ; Yu, Li ; Hibino, Narutoshi ; Fisher, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-b3862bd1a7bab558a297ec902e206100ebbe2694a7778f9806dbd5e26fe6116d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomedical materials</topic><topic>Bioprosthesis</topic><topic>Cardiovascular system</topic><topic>Compressive Strength - physiology</topic><topic>Elastic Modulus - physiology</topic><topic>Equipment Failure Analysis</topic><topic>Fumarates - chemistry</topic><topic>Male</topic><topic>Materials Testing</topic><topic>Original</topic><topic>Original Articles</topic><topic>Pericardium - immunology</topic><topic>Pericardium - transplantation</topic><topic>Polymers</topic><topic>Polypropylenes - chemistry</topic><topic>Prosthesis Design</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Stress, Mechanical</topic><topic>Tensile Strength - physiology</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bracaglia, Laura G.</creatorcontrib><creatorcontrib>Yu, Li</creatorcontrib><creatorcontrib>Hibino, Narutoshi</creatorcontrib><creatorcontrib>Fisher, John P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bracaglia, Laura G.</au><au>Yu, Li</au><au>Hibino, Narutoshi</au><au>Fisher, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforced Pericardium as a Hybrid Material for Cardiovascular Applications</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>20</volume><issue>21-22</issue><spage>287</spage><epage>2816</epage><pages>287-2816</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>Pericardium-based cardiovascular devices are currently bound by a 10-year maximum lifetime due to detrimental calcification and degradation. The goal of this work is to develop a novel synthetic material to create a lasting replacement for malfunctioning or diseased tissue in the cardiovascular system. This study couples poly(propylene fumarate) (PPF) and a natural biomaterial together in an unprecedented hybrid composite and evaluates the composite versus the standard glutaraldehyde-treated tissue. The polymer reinforcement is hypothesized to provide initial physical protection from proteolytic enzymes and degradation, but leave the original collagen and elastin matrix unaltered. The calcification rate and durability of the hybrid material are evaluated in vitro and in an in vivo subdermal animal model. Results demonstrate that PPF is an effective support and leads to significantly less calcium deposition, important metrics when evaluating cardiovascular material. By avoiding chemical crosslinking of the tissue and associated side effects, PPF-reinforced pericardium as a biohybrid material offers a promising potential direction for further development in cardiovascular material alternatives. Eliminating the basis for the majority of cardiovascular prosthetic failures could revolutionize expectations for extent of cardiovascular repair.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>25236439</pmid><doi>10.1089/ten.tea.2014.0516</doi><tpages>2530</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1937-3341
ispartof Tissue engineering. Part A, 2014-11, Vol.20 (21-22), p.287-2816
issn 1937-3341
1937-335X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4229701
source Mary Ann Liebert Online Subscription
subjects Animals
Biocompatible Materials - chemistry
Biomedical materials
Bioprosthesis
Cardiovascular system
Compressive Strength - physiology
Elastic Modulus - physiology
Equipment Failure Analysis
Fumarates - chemistry
Male
Materials Testing
Original
Original Articles
Pericardium - immunology
Pericardium - transplantation
Polymers
Polypropylenes - chemistry
Prosthesis Design
Rats
Rats, Sprague-Dawley
Stress, Mechanical
Tensile Strength - physiology
Tissue engineering
Tissue Scaffolds
title Reinforced Pericardium as a Hybrid Material for Cardiovascular Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforced%20Pericardium%20as%20a%20Hybrid%20Material%20for%20Cardiovascular%20Applications&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Bracaglia,%20Laura%20G.&rft.date=2014-11-01&rft.volume=20&rft.issue=21-22&rft.spage=287&rft.epage=2816&rft.pages=287-2816&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2014.0516&rft_dat=%3Cproquest_pubme%3E1625343627%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-b3862bd1a7bab558a297ec902e206100ebbe2694a7778f9806dbd5e26fe6116d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1622858564&rft_id=info:pmid/25236439&rfr_iscdi=true