Loading…

Enhanced Chondrogenic Differentiation of Dental Pulp Stem Cells Using Nanopatterned PEG-GelMA-HA Hydrogels

We have examined the effects of surface nanotopography and hyaluronic acid (HA) on in vitro chondrogenesis of dental pulp stem cells (DPSCs). Ultraviolet-assisted capillary force lithography was employed to fabricate well-defined nanostructured scaffolds of composite PEG-GelMA-HA hydrogels that cons...

Full description

Saved in:
Bibliographic Details
Published in:Tissue engineering. Part A 2014-11, Vol.20 (21-22), p.2817-2829
Main Authors: Nemeth, Cameron L., Janebodin, Kajohnkiart, Yuan, Alex E., Dennis, James E., Reyes, Morayma, Kim, Deok-Ho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c574t-df49e220ce98aa8859dbe31349977896a3805cc87e981f70d05bb88cb7a3bb7e3
cites cdi_FETCH-LOGICAL-c574t-df49e220ce98aa8859dbe31349977896a3805cc87e981f70d05bb88cb7a3bb7e3
container_end_page 2829
container_issue 21-22
container_start_page 2817
container_title Tissue engineering. Part A
container_volume 20
creator Nemeth, Cameron L.
Janebodin, Kajohnkiart
Yuan, Alex E.
Dennis, James E.
Reyes, Morayma
Kim, Deok-Ho
description We have examined the effects of surface nanotopography and hyaluronic acid (HA) on in vitro chondrogenesis of dental pulp stem cells (DPSCs). Ultraviolet-assisted capillary force lithography was employed to fabricate well-defined nanostructured scaffolds of composite PEG-GelMA-HA hydrogels that consist of poly(ethylene glycol) dimethacrylate (PEGDMA), methacrylated gelatin (GelMA), and HA. Using this microengineered platform, we first demonstrated that DPSCs formed three-dimensional spheroids, which provide an appropriate environment for in vitro chondrogenic differentiation. We also found that DPSCs cultured on nanopatterned PEG-GelMA-HA scaffolds showed a significant upregulation of the chondrogenic gene markers ( Sox9, Alkaline phosphatase, Aggrecan, Procollagen type II, and Procollagen type X ), while downregulating the pluripotent stem cell gene, Nanog, and epithelial–mesenchymal genes ( Twist, Snail, Slug ) compared with tissue culture polystyrene-cultured DPSCs. Immunocytochemistry showed more extensive deposition of collagen type II in DPSCs cultured on the nanopatterned PEG-GelMA-HA scaffolds. These findings suggest that nanotopography and HA provide important cues for promoting chondrogenic differentiation of DPSCs.
doi_str_mv 10.1089/ten.tea.2013.0614
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4229712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1635031569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-df49e220ce98aa8859dbe31349977896a3805cc87e981f70d05bb88cb7a3bb7e3</originalsourceid><addsrcrecordid>eNqNkc1qGzEUhUVpaVK3D9BNEXTTzTjSaGYkbQrGce1C2gaSQHdCo7ljy4wlV9IE8vaR69SkXRUk9HO_e7iHg9B7SqaUCHmRwE0T6GlJKJuShlYv0DmVjBeM1T9fnu4VPUNvYtwS0pCG89forKx4JQVpztF24TbaGejwfONdF_wanDX40vY9BHDJ6mS9w77Hl_mlB3w9Dnt8k2CH5zAMEd9F69b4u3Z-r1OC4LLU9WJZLGH4NitWM7x6-K06xLfoVa-HCO-ezgm6-7K4na-Kqx_Lr_PZVWFqXqWi6ysJZUkMSKG1ELXsWmCUVVJyLmSjmSC1MYLnOu056UjdtkKYlmvWthzYBH0-6u7HdgedyXMHPah9sDsdHpTXVv1dcXaj1v5eVWUpOS2zwKcngeB_jRCT2tloslvtwI9R0YbVhNG6kRn9-A-69WNw2V6mSlYJzvKaIHqkTPAxBuhPw1CiDkmqnGTeWh2SVIckc8-H5y5OHX-iywA_Aodv7dxgoYWQ_kP6Ee7Brs4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1623487387</pqid></control><display><type>article</type><title>Enhanced Chondrogenic Differentiation of Dental Pulp Stem Cells Using Nanopatterned PEG-GelMA-HA Hydrogels</title><source>Mary Ann Liebert Online Subscription</source><creator>Nemeth, Cameron L. ; Janebodin, Kajohnkiart ; Yuan, Alex E. ; Dennis, James E. ; Reyes, Morayma ; Kim, Deok-Ho</creator><creatorcontrib>Nemeth, Cameron L. ; Janebodin, Kajohnkiart ; Yuan, Alex E. ; Dennis, James E. ; Reyes, Morayma ; Kim, Deok-Ho</creatorcontrib><description>We have examined the effects of surface nanotopography and hyaluronic acid (HA) on in vitro chondrogenesis of dental pulp stem cells (DPSCs). Ultraviolet-assisted capillary force lithography was employed to fabricate well-defined nanostructured scaffolds of composite PEG-GelMA-HA hydrogels that consist of poly(ethylene glycol) dimethacrylate (PEGDMA), methacrylated gelatin (GelMA), and HA. Using this microengineered platform, we first demonstrated that DPSCs formed three-dimensional spheroids, which provide an appropriate environment for in vitro chondrogenic differentiation. We also found that DPSCs cultured on nanopatterned PEG-GelMA-HA scaffolds showed a significant upregulation of the chondrogenic gene markers ( Sox9, Alkaline phosphatase, Aggrecan, Procollagen type II, and Procollagen type X ), while downregulating the pluripotent stem cell gene, Nanog, and epithelial–mesenchymal genes ( Twist, Snail, Slug ) compared with tissue culture polystyrene-cultured DPSCs. Immunocytochemistry showed more extensive deposition of collagen type II in DPSCs cultured on the nanopatterned PEG-GelMA-HA scaffolds. These findings suggest that nanotopography and HA provide important cues for promoting chondrogenic differentiation of DPSCs.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2013.0614</identifier><identifier>PMID: 24749806</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Animals, Newborn ; Biocompatible Materials - chemical synthesis ; Biomedical materials ; Cell Differentiation - physiology ; Cell Proliferation - physiology ; Cell Size ; Cell Survival - physiology ; Cells, Cultured ; Chondrogenesis - physiology ; Dental Pulp - cytology ; Dental Pulp - physiology ; Gene expression ; Hyaluronic Acid - chemistry ; Hydrogels ; Hydrogels - chemistry ; Materials Testing ; Methacrylates - chemistry ; Mice ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology ; Original ; Original Articles ; Polyethylene Glycols - chemistry ; Stem cells ; Stem Cells - cytology ; Stem Cells - physiology ; Surface Properties ; Tissue engineering ; Tissue Engineering - methods</subject><ispartof>Tissue engineering. Part A, 2014-11, Vol.20 (21-22), p.2817-2829</ispartof><rights>2014, Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2014, Mary Ann Liebert, Inc.</rights><rights>Copyright 2014, Mary Ann Liebert, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-df49e220ce98aa8859dbe31349977896a3805cc87e981f70d05bb88cb7a3bb7e3</citedby><cites>FETCH-LOGICAL-c574t-df49e220ce98aa8859dbe31349977896a3805cc87e981f70d05bb88cb7a3bb7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.liebertpub.com/doi/epdf/10.1089/ten.tea.2013.0614$$EPDF$$P50$$Gmaryannliebert$$H</linktopdf><linktohtml>$$Uhttps://www.liebertpub.com/doi/full/10.1089/ten.tea.2013.0614$$EHTML$$P50$$Gmaryannliebert$$H</linktohtml><link.rule.ids>230,314,776,780,881,3029,21704,27903,27904,55269,55281</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24749806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nemeth, Cameron L.</creatorcontrib><creatorcontrib>Janebodin, Kajohnkiart</creatorcontrib><creatorcontrib>Yuan, Alex E.</creatorcontrib><creatorcontrib>Dennis, James E.</creatorcontrib><creatorcontrib>Reyes, Morayma</creatorcontrib><creatorcontrib>Kim, Deok-Ho</creatorcontrib><title>Enhanced Chondrogenic Differentiation of Dental Pulp Stem Cells Using Nanopatterned PEG-GelMA-HA Hydrogels</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>We have examined the effects of surface nanotopography and hyaluronic acid (HA) on in vitro chondrogenesis of dental pulp stem cells (DPSCs). Ultraviolet-assisted capillary force lithography was employed to fabricate well-defined nanostructured scaffolds of composite PEG-GelMA-HA hydrogels that consist of poly(ethylene glycol) dimethacrylate (PEGDMA), methacrylated gelatin (GelMA), and HA. Using this microengineered platform, we first demonstrated that DPSCs formed three-dimensional spheroids, which provide an appropriate environment for in vitro chondrogenic differentiation. We also found that DPSCs cultured on nanopatterned PEG-GelMA-HA scaffolds showed a significant upregulation of the chondrogenic gene markers ( Sox9, Alkaline phosphatase, Aggrecan, Procollagen type II, and Procollagen type X ), while downregulating the pluripotent stem cell gene, Nanog, and epithelial–mesenchymal genes ( Twist, Snail, Slug ) compared with tissue culture polystyrene-cultured DPSCs. Immunocytochemistry showed more extensive deposition of collagen type II in DPSCs cultured on the nanopatterned PEG-GelMA-HA scaffolds. These findings suggest that nanotopography and HA provide important cues for promoting chondrogenic differentiation of DPSCs.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biomedical materials</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Proliferation - physiology</subject><subject>Cell Size</subject><subject>Cell Survival - physiology</subject><subject>Cells, Cultured</subject><subject>Chondrogenesis - physiology</subject><subject>Dental Pulp - cytology</subject><subject>Dental Pulp - physiology</subject><subject>Gene expression</subject><subject>Hyaluronic Acid - chemistry</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Materials Testing</subject><subject>Methacrylates - chemistry</subject><subject>Mice</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology</subject><subject>Original</subject><subject>Original Articles</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - physiology</subject><subject>Surface Properties</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc1qGzEUhUVpaVK3D9BNEXTTzTjSaGYkbQrGce1C2gaSQHdCo7ljy4wlV9IE8vaR69SkXRUk9HO_e7iHg9B7SqaUCHmRwE0T6GlJKJuShlYv0DmVjBeM1T9fnu4VPUNvYtwS0pCG89forKx4JQVpztF24TbaGejwfONdF_wanDX40vY9BHDJ6mS9w77Hl_mlB3w9Dnt8k2CH5zAMEd9F69b4u3Z-r1OC4LLU9WJZLGH4NitWM7x6-K06xLfoVa-HCO-ezgm6-7K4na-Kqx_Lr_PZVWFqXqWi6ysJZUkMSKG1ELXsWmCUVVJyLmSjmSC1MYLnOu056UjdtkKYlmvWthzYBH0-6u7HdgedyXMHPah9sDsdHpTXVv1dcXaj1v5eVWUpOS2zwKcngeB_jRCT2tloslvtwI9R0YbVhNG6kRn9-A-69WNw2V6mSlYJzvKaIHqkTPAxBuhPw1CiDkmqnGTeWh2SVIckc8-H5y5OHX-iywA_Aodv7dxgoYWQ_kP6Ee7Brs4</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Nemeth, Cameron L.</creator><creator>Janebodin, Kajohnkiart</creator><creator>Yuan, Alex E.</creator><creator>Dennis, James E.</creator><creator>Reyes, Morayma</creator><creator>Kim, Deok-Ho</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20141101</creationdate><title>Enhanced Chondrogenic Differentiation of Dental Pulp Stem Cells Using Nanopatterned PEG-GelMA-HA Hydrogels</title><author>Nemeth, Cameron L. ; Janebodin, Kajohnkiart ; Yuan, Alex E. ; Dennis, James E. ; Reyes, Morayma ; Kim, Deok-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-df49e220ce98aa8859dbe31349977896a3805cc87e981f70d05bb88cb7a3bb7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biomedical materials</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Proliferation - physiology</topic><topic>Cell Size</topic><topic>Cell Survival - physiology</topic><topic>Cells, Cultured</topic><topic>Chondrogenesis - physiology</topic><topic>Dental Pulp - cytology</topic><topic>Dental Pulp - physiology</topic><topic>Gene expression</topic><topic>Hyaluronic Acid - chemistry</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Materials Testing</topic><topic>Methacrylates - chemistry</topic><topic>Mice</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology</topic><topic>Original</topic><topic>Original Articles</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - physiology</topic><topic>Surface Properties</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nemeth, Cameron L.</creatorcontrib><creatorcontrib>Janebodin, Kajohnkiart</creatorcontrib><creatorcontrib>Yuan, Alex E.</creatorcontrib><creatorcontrib>Dennis, James E.</creatorcontrib><creatorcontrib>Reyes, Morayma</creatorcontrib><creatorcontrib>Kim, Deok-Ho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nemeth, Cameron L.</au><au>Janebodin, Kajohnkiart</au><au>Yuan, Alex E.</au><au>Dennis, James E.</au><au>Reyes, Morayma</au><au>Kim, Deok-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Chondrogenic Differentiation of Dental Pulp Stem Cells Using Nanopatterned PEG-GelMA-HA Hydrogels</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>20</volume><issue>21-22</issue><spage>2817</spage><epage>2829</epage><pages>2817-2829</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>We have examined the effects of surface nanotopography and hyaluronic acid (HA) on in vitro chondrogenesis of dental pulp stem cells (DPSCs). Ultraviolet-assisted capillary force lithography was employed to fabricate well-defined nanostructured scaffolds of composite PEG-GelMA-HA hydrogels that consist of poly(ethylene glycol) dimethacrylate (PEGDMA), methacrylated gelatin (GelMA), and HA. Using this microengineered platform, we first demonstrated that DPSCs formed three-dimensional spheroids, which provide an appropriate environment for in vitro chondrogenic differentiation. We also found that DPSCs cultured on nanopatterned PEG-GelMA-HA scaffolds showed a significant upregulation of the chondrogenic gene markers ( Sox9, Alkaline phosphatase, Aggrecan, Procollagen type II, and Procollagen type X ), while downregulating the pluripotent stem cell gene, Nanog, and epithelial–mesenchymal genes ( Twist, Snail, Slug ) compared with tissue culture polystyrene-cultured DPSCs. Immunocytochemistry showed more extensive deposition of collagen type II in DPSCs cultured on the nanopatterned PEG-GelMA-HA scaffolds. These findings suggest that nanotopography and HA provide important cues for promoting chondrogenic differentiation of DPSCs.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>24749806</pmid><doi>10.1089/ten.tea.2013.0614</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1937-3341
ispartof Tissue engineering. Part A, 2014-11, Vol.20 (21-22), p.2817-2829
issn 1937-3341
1937-335X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4229712
source Mary Ann Liebert Online Subscription
subjects Animals
Animals, Newborn
Biocompatible Materials - chemical synthesis
Biomedical materials
Cell Differentiation - physiology
Cell Proliferation - physiology
Cell Size
Cell Survival - physiology
Cells, Cultured
Chondrogenesis - physiology
Dental Pulp - cytology
Dental Pulp - physiology
Gene expression
Hyaluronic Acid - chemistry
Hydrogels
Hydrogels - chemistry
Materials Testing
Methacrylates - chemistry
Mice
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology
Original
Original Articles
Polyethylene Glycols - chemistry
Stem cells
Stem Cells - cytology
Stem Cells - physiology
Surface Properties
Tissue engineering
Tissue Engineering - methods
title Enhanced Chondrogenic Differentiation of Dental Pulp Stem Cells Using Nanopatterned PEG-GelMA-HA Hydrogels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Chondrogenic%20Differentiation%20of%20Dental%20Pulp%20Stem%20Cells%20Using%20Nanopatterned%20PEG-GelMA-HA%20Hydrogels&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Nemeth,%20Cameron%20L.&rft.date=2014-11-01&rft.volume=20&rft.issue=21-22&rft.spage=2817&rft.epage=2829&rft.pages=2817-2829&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2013.0614&rft_dat=%3Cproquest_pubme%3E1635031569%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c574t-df49e220ce98aa8859dbe31349977896a3805cc87e981f70d05bb88cb7a3bb7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1623487387&rft_id=info:pmid/24749806&rfr_iscdi=true