Loading…
Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803
Recent efforts demonstrated the potential application of cyanobacteria as a "microbial cell factory" to produce butanol directly from CO2. However, cyanobacteria have very low tolerance to the toxic butanol, which limits the economic viability of this renewable system. Through a long-term...
Saved in:
Published in: | Microbial cell factories 2014-11, Vol.13 (1), p.151-151, Article 151 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c627t-2af8dd2aa1168040ef12fedbdbeb325c58461fccc0be0a435bed0a843ec7ebb43 |
---|---|
cites | cdi_FETCH-LOGICAL-c627t-2af8dd2aa1168040ef12fedbdbeb325c58461fccc0be0a435bed0a843ec7ebb43 |
container_end_page | 151 |
container_issue | 1 |
container_start_page | 151 |
container_title | Microbial cell factories |
container_volume | 13 |
creator | Wang, Yaxing Shi, Mengliang Niu, Xiangfeng Zhang, Xiaoqing Gao, Lianju Chen, Lei Wang, Jiangxin Zhang, Weiwen |
description | Recent efforts demonstrated the potential application of cyanobacteria as a "microbial cell factory" to produce butanol directly from CO2. However, cyanobacteria have very low tolerance to the toxic butanol, which limits the economic viability of this renewable system.
Through a long-term experimental evolution process, we achieved a 150% increase of the butanol tolerance in a model cyanobacterium Synechocystis sp. PCC 6803 after a continuous 94 passages for 395 days in BG11 media amended with gradually increased butanol concentration from 0.2% to 0.5% (v/v). To decipher the molecular mechanism responsible for the tolerance increase, we employed an integrated GC-MS and LC-MS approach to determine metabolomic profiles of the butanol-tolerant Synechocystis strains isolated from several stages of the evolution, and then applied PCA and WGCNA network analyses to identify the key metabolites and metabolic modules related to the increased tolerance. The results showed that unstable metabolites of 3-phosphoglyceric acid (3PG), D-fructose 6-phosphate (F6P), D-glucose 6-phosphate (G6P), NADPH, phosphoenolpyruvic acid (PEP), D-ribose 5-phosphate (R5P), and stable metabolites of glycerol, L-serine and stearic acid were differentially regulated during the evolution process, which could be related to tolerance increase to butanol in Synechocystis.
The study provided the first time-series description of the metabolomic changes related to the gradual increase of butanol tolerance, and revealed a metabolomic basis important for rational tolerance engineering in Synechocystis. |
doi_str_mv | 10.1186/s12934-014-0151-y |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4234862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539628301</galeid><sourcerecordid>A539628301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c627t-2af8dd2aa1168040ef12fedbdbeb325c58461fccc0be0a435bed0a843ec7ebb43</originalsourceid><addsrcrecordid>eNptkl1rFDEUhgdRbK3-AG9kwBu9mDWfM5kboSx-FCqK1euQZM7spmaTNckU59-bYWvtioSQcPK8b8jJW1XPMVphLNo3CZOesgbhZXLczA-qU8w63hDB-4f39ifVk5SuEcKd6Ojj6oRw2raob0-rH58gKx1c2FlTa5VsqsNYu1KKKoc413AT3JRt8EtdT1n54OocHETlDdTW1_ttyCHNPm8hF5Or2YPZBjOnXMzSflV_Wa_rViD6tHo0Kpfg2e16Vn1__-7b-mNz-fnDxfr8sjEt6XJD1CiGgSiFcVExBCMmIwx60KAp4YYL1uLRGIM0IMUo1zAgJRgF04HWjJ5Vbw---0nvYDDgc1RO7qPdqTjLoKw8PvF2KzfhRjJCmWhJMXh1axDDzwlSljubDDinPIQpSdxSjnDPqSjoy3_Q6zBFX55XKMI7xkr__1Ib5UBaP4Zyr1lM5TmnfUsERbhQq_9QZQxQfid4GG2pHwleHwkKk-FX3qgpJXlx9fWYxQfWxJBShPGuHxjJJU3ykCZZ0iSXNMm5aF7cb-Sd4k986G_4OsYc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625744285</pqid></control><display><type>article</type><title>Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Wang, Yaxing ; Shi, Mengliang ; Niu, Xiangfeng ; Zhang, Xiaoqing ; Gao, Lianju ; Chen, Lei ; Wang, Jiangxin ; Zhang, Weiwen</creator><creatorcontrib>Wang, Yaxing ; Shi, Mengliang ; Niu, Xiangfeng ; Zhang, Xiaoqing ; Gao, Lianju ; Chen, Lei ; Wang, Jiangxin ; Zhang, Weiwen</creatorcontrib><description>Recent efforts demonstrated the potential application of cyanobacteria as a "microbial cell factory" to produce butanol directly from CO2. However, cyanobacteria have very low tolerance to the toxic butanol, which limits the economic viability of this renewable system.
Through a long-term experimental evolution process, we achieved a 150% increase of the butanol tolerance in a model cyanobacterium Synechocystis sp. PCC 6803 after a continuous 94 passages for 395 days in BG11 media amended with gradually increased butanol concentration from 0.2% to 0.5% (v/v). To decipher the molecular mechanism responsible for the tolerance increase, we employed an integrated GC-MS and LC-MS approach to determine metabolomic profiles of the butanol-tolerant Synechocystis strains isolated from several stages of the evolution, and then applied PCA and WGCNA network analyses to identify the key metabolites and metabolic modules related to the increased tolerance. The results showed that unstable metabolites of 3-phosphoglyceric acid (3PG), D-fructose 6-phosphate (F6P), D-glucose 6-phosphate (G6P), NADPH, phosphoenolpyruvic acid (PEP), D-ribose 5-phosphate (R5P), and stable metabolites of glycerol, L-serine and stearic acid were differentially regulated during the evolution process, which could be related to tolerance increase to butanol in Synechocystis.
The study provided the first time-series description of the metabolomic changes related to the gradual increase of butanol tolerance, and revealed a metabolomic basis important for rational tolerance engineering in Synechocystis.</description><identifier>ISSN: 1475-2859</identifier><identifier>EISSN: 1475-2859</identifier><identifier>DOI: 10.1186/s12934-014-0151-y</identifier><identifier>PMID: 25366096</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Adaptation ; Analysis ; Biodiesel fuels ; Butanols - metabolism ; Chromatography ; Cyanobacteria ; Data processing ; Dehydrogenases ; Directed Molecular Evolution - methods ; Ethanol ; Evolution & development ; Experiments ; Gene expression ; Genetic engineering ; Glycerin ; Glycerol ; Identification systems ; Instrument industry ; International economic relations ; Laboratories ; Metabolism ; Metabolites ; Photosynthesis ; Principal components analysis ; Synechocystis ; Synechocystis - genetics ; Synechocystis - metabolism</subject><ispartof>Microbial cell factories, 2014-11, Vol.13 (1), p.151-151, Article 151</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>2014 Wang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.</rights><rights>Wang et al.; licensee BioMed Central Ltd. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c627t-2af8dd2aa1168040ef12fedbdbeb325c58461fccc0be0a435bed0a843ec7ebb43</citedby><cites>FETCH-LOGICAL-c627t-2af8dd2aa1168040ef12fedbdbeb325c58461fccc0be0a435bed0a843ec7ebb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234862/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1625744285?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25366096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yaxing</creatorcontrib><creatorcontrib>Shi, Mengliang</creatorcontrib><creatorcontrib>Niu, Xiangfeng</creatorcontrib><creatorcontrib>Zhang, Xiaoqing</creatorcontrib><creatorcontrib>Gao, Lianju</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Wang, Jiangxin</creatorcontrib><creatorcontrib>Zhang, Weiwen</creatorcontrib><title>Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803</title><title>Microbial cell factories</title><addtitle>Microb Cell Fact</addtitle><description>Recent efforts demonstrated the potential application of cyanobacteria as a "microbial cell factory" to produce butanol directly from CO2. However, cyanobacteria have very low tolerance to the toxic butanol, which limits the economic viability of this renewable system.
Through a long-term experimental evolution process, we achieved a 150% increase of the butanol tolerance in a model cyanobacterium Synechocystis sp. PCC 6803 after a continuous 94 passages for 395 days in BG11 media amended with gradually increased butanol concentration from 0.2% to 0.5% (v/v). To decipher the molecular mechanism responsible for the tolerance increase, we employed an integrated GC-MS and LC-MS approach to determine metabolomic profiles of the butanol-tolerant Synechocystis strains isolated from several stages of the evolution, and then applied PCA and WGCNA network analyses to identify the key metabolites and metabolic modules related to the increased tolerance. The results showed that unstable metabolites of 3-phosphoglyceric acid (3PG), D-fructose 6-phosphate (F6P), D-glucose 6-phosphate (G6P), NADPH, phosphoenolpyruvic acid (PEP), D-ribose 5-phosphate (R5P), and stable metabolites of glycerol, L-serine and stearic acid were differentially regulated during the evolution process, which could be related to tolerance increase to butanol in Synechocystis.
The study provided the first time-series description of the metabolomic changes related to the gradual increase of butanol tolerance, and revealed a metabolomic basis important for rational tolerance engineering in Synechocystis.</description><subject>Adaptation</subject><subject>Analysis</subject><subject>Biodiesel fuels</subject><subject>Butanols - metabolism</subject><subject>Chromatography</subject><subject>Cyanobacteria</subject><subject>Data processing</subject><subject>Dehydrogenases</subject><subject>Directed Molecular Evolution - methods</subject><subject>Ethanol</subject><subject>Evolution & development</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>Glycerin</subject><subject>Glycerol</subject><subject>Identification systems</subject><subject>Instrument industry</subject><subject>International economic relations</subject><subject>Laboratories</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Photosynthesis</subject><subject>Principal components analysis</subject><subject>Synechocystis</subject><subject>Synechocystis - genetics</subject><subject>Synechocystis - metabolism</subject><issn>1475-2859</issn><issn>1475-2859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkl1rFDEUhgdRbK3-AG9kwBu9mDWfM5kboSx-FCqK1euQZM7spmaTNckU59-bYWvtioSQcPK8b8jJW1XPMVphLNo3CZOesgbhZXLczA-qU8w63hDB-4f39ifVk5SuEcKd6Ojj6oRw2raob0-rH58gKx1c2FlTa5VsqsNYu1KKKoc413AT3JRt8EtdT1n54OocHETlDdTW1_ttyCHNPm8hF5Or2YPZBjOnXMzSflV_Wa_rViD6tHo0Kpfg2e16Vn1__-7b-mNz-fnDxfr8sjEt6XJD1CiGgSiFcVExBCMmIwx60KAp4YYL1uLRGIM0IMUo1zAgJRgF04HWjJ5Vbw---0nvYDDgc1RO7qPdqTjLoKw8PvF2KzfhRjJCmWhJMXh1axDDzwlSljubDDinPIQpSdxSjnDPqSjoy3_Q6zBFX55XKMI7xkr__1Ib5UBaP4Zyr1lM5TmnfUsERbhQq_9QZQxQfid4GG2pHwleHwkKk-FX3qgpJXlx9fWYxQfWxJBShPGuHxjJJU3ykCZZ0iSXNMm5aF7cb-Sd4k986G_4OsYc</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Wang, Yaxing</creator><creator>Shi, Mengliang</creator><creator>Niu, Xiangfeng</creator><creator>Zhang, Xiaoqing</creator><creator>Gao, Lianju</creator><creator>Chen, Lei</creator><creator>Wang, Jiangxin</creator><creator>Zhang, Weiwen</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QO</scope><scope>M7N</scope><scope>5PM</scope></search><sort><creationdate>20141101</creationdate><title>Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803</title><author>Wang, Yaxing ; Shi, Mengliang ; Niu, Xiangfeng ; Zhang, Xiaoqing ; Gao, Lianju ; Chen, Lei ; Wang, Jiangxin ; Zhang, Weiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c627t-2af8dd2aa1168040ef12fedbdbeb325c58461fccc0be0a435bed0a843ec7ebb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptation</topic><topic>Analysis</topic><topic>Biodiesel fuels</topic><topic>Butanols - metabolism</topic><topic>Chromatography</topic><topic>Cyanobacteria</topic><topic>Data processing</topic><topic>Dehydrogenases</topic><topic>Directed Molecular Evolution - methods</topic><topic>Ethanol</topic><topic>Evolution & development</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>Glycerin</topic><topic>Glycerol</topic><topic>Identification systems</topic><topic>Instrument industry</topic><topic>International economic relations</topic><topic>Laboratories</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Photosynthesis</topic><topic>Principal components analysis</topic><topic>Synechocystis</topic><topic>Synechocystis - genetics</topic><topic>Synechocystis - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yaxing</creatorcontrib><creatorcontrib>Shi, Mengliang</creatorcontrib><creatorcontrib>Niu, Xiangfeng</creatorcontrib><creatorcontrib>Zhang, Xiaoqing</creatorcontrib><creatorcontrib>Gao, Lianju</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Wang, Jiangxin</creatorcontrib><creatorcontrib>Zhang, Weiwen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Biotechnology Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Microbial cell factories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yaxing</au><au>Shi, Mengliang</au><au>Niu, Xiangfeng</au><au>Zhang, Xiaoqing</au><au>Gao, Lianju</au><au>Chen, Lei</au><au>Wang, Jiangxin</au><au>Zhang, Weiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803</atitle><jtitle>Microbial cell factories</jtitle><addtitle>Microb Cell Fact</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>13</volume><issue>1</issue><spage>151</spage><epage>151</epage><pages>151-151</pages><artnum>151</artnum><issn>1475-2859</issn><eissn>1475-2859</eissn><abstract>Recent efforts demonstrated the potential application of cyanobacteria as a "microbial cell factory" to produce butanol directly from CO2. However, cyanobacteria have very low tolerance to the toxic butanol, which limits the economic viability of this renewable system.
Through a long-term experimental evolution process, we achieved a 150% increase of the butanol tolerance in a model cyanobacterium Synechocystis sp. PCC 6803 after a continuous 94 passages for 395 days in BG11 media amended with gradually increased butanol concentration from 0.2% to 0.5% (v/v). To decipher the molecular mechanism responsible for the tolerance increase, we employed an integrated GC-MS and LC-MS approach to determine metabolomic profiles of the butanol-tolerant Synechocystis strains isolated from several stages of the evolution, and then applied PCA and WGCNA network analyses to identify the key metabolites and metabolic modules related to the increased tolerance. The results showed that unstable metabolites of 3-phosphoglyceric acid (3PG), D-fructose 6-phosphate (F6P), D-glucose 6-phosphate (G6P), NADPH, phosphoenolpyruvic acid (PEP), D-ribose 5-phosphate (R5P), and stable metabolites of glycerol, L-serine and stearic acid were differentially regulated during the evolution process, which could be related to tolerance increase to butanol in Synechocystis.
The study provided the first time-series description of the metabolomic changes related to the gradual increase of butanol tolerance, and revealed a metabolomic basis important for rational tolerance engineering in Synechocystis.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>25366096</pmid><doi>10.1186/s12934-014-0151-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1475-2859 |
ispartof | Microbial cell factories, 2014-11, Vol.13 (1), p.151-151, Article 151 |
issn | 1475-2859 1475-2859 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4234862 |
source | PubMed Central Free; Publicly Available Content Database |
subjects | Adaptation Analysis Biodiesel fuels Butanols - metabolism Chromatography Cyanobacteria Data processing Dehydrogenases Directed Molecular Evolution - methods Ethanol Evolution & development Experiments Gene expression Genetic engineering Glycerin Glycerol Identification systems Instrument industry International economic relations Laboratories Metabolism Metabolites Photosynthesis Principal components analysis Synechocystis Synechocystis - genetics Synechocystis - metabolism |
title | Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolomic%20basis%20of%20laboratory%20evolution%20of%20butanol%20tolerance%20in%20photosynthetic%20Synechocystis%20sp.%20PCC%206803&rft.jtitle=Microbial%20cell%20factories&rft.au=Wang,%20Yaxing&rft.date=2014-11-01&rft.volume=13&rft.issue=1&rft.spage=151&rft.epage=151&rft.pages=151-151&rft.artnum=151&rft.issn=1475-2859&rft.eissn=1475-2859&rft_id=info:doi/10.1186/s12934-014-0151-y&rft_dat=%3Cgale_pubme%3EA539628301%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c627t-2af8dd2aa1168040ef12fedbdbeb325c58461fccc0be0a435bed0a843ec7ebb43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1625744285&rft_id=info:pmid/25366096&rft_galeid=A539628301&rfr_iscdi=true |