Loading…

Arterial and end-tidal carbon dioxide difference in pediatric intensive care

Arterial carbon dioxide tension (PaCO2) is considered the gold standard for scrupulous monitoring in pediatric intensive care unit (PICU), but it is invasive, laborious, expensive, and intermittent. The study aims to explore when we can use end-tidal carbon dioxide tension (PETCO2) as a reliable, co...

Full description

Saved in:
Bibliographic Details
Published in:Indian journal of critical care medicine 2014-11, Vol.18 (11), p.711-715
Main Authors: Goonasekera, Chulananda Dias, Goodwin, Alison, Wang, Yanzhong, Goodman, James, Deep, Akash
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Arterial carbon dioxide tension (PaCO2) is considered the gold standard for scrupulous monitoring in pediatric intensive care unit (PICU), but it is invasive, laborious, expensive, and intermittent. The study aims to explore when we can use end-tidal carbon dioxide tension (PETCO2) as a reliable, continuous, and noninvasive monitor of arterial CO2. Concurrent PETCO2, fraction of inspired oxygen, PaCO2, and arterial oxygen tension values of clinically stable children on mechanical ventilation were recorded. Children with extra-pulmonary ventriculoatrial shunts were excluded. The PETCO2 and PaCO2 difference and its variability and reproducibility were studied. A total of 624 concurrent readings were obtained from 105 children (mean age [SD] 5.53 [5.43] years) requiring invasive bi-level positive airway pressure ventilation in the PICU. All had continuous PETCO2 monitoring and an arterial line for blood gas measurement. The mean (SD) number of concurrent readings obtained from each child, 4-6 h apart was 6.0 (4.05). The PETCO2 values were higher than PaCO2 in 142 observations (22.7%). The PaCO2-PETCO2 difference was individual admission specific (ANOVA, P < 0.001). The PaCO2-PETCO2 difference correlated positively with the alveolar-arterial oxygen tension [P(A-a)O2] difference (ρ = 0.381 P < 0.0001). There was a fixed bias between the PETCO2 and PaCO2 measuring methods, difference +0.66 KPa (95% confidence interval: +0.57 to +0.76). The PaCO2-PETCO2 difference was individual specific. It was not affected by the primary disorder leading to the ventilation.
ISSN:0972-5229
1998-359X
DOI:10.4103/0972-5229.144011