Loading…
A virtual reality model of the clivus and surgical simulation via transoral or transnasal route
Neurosurgery in areas with restricted space and complicated anatomy can be greatly aided by the virtual reality (VR) technique. The clivus represents one of such challenging surgical areas, but its VR has not been established. The present study aimed to document a VR model of clival anatomy that may...
Saved in:
Published in: | International journal of clinical and experimental medicine 2014-01, Vol.7 (10), p.3270-3279 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neurosurgery in areas with restricted space and complicated anatomy can be greatly aided by the virtual reality (VR) technique. The clivus represents one of such challenging surgical areas, but its VR has not been established. The present study aimed to document a VR model of clival anatomy that may be useful in clival surgery.
High resolution CT angiography and MRI were used. The study included a total of 20 patients who did not have any obvious abnormalities detected in the oral, nasal, and clival areas. The images were fused with a Dextroscope.
In the VR model, the key structures such as the clival bone, basilar artery, brainstem, pituitary gland, and paranasal sinuses were clearly observed. The morphology of the clivus and its spatial relationships with the neighboring structures were also illustrated. Visualization of the clival model can be made flexible from various planes, angles, or orientations. In addition, surgical access to the clivus via the transoral route or transnasal route was simulated in detail.
The simulation of the VR model offers a straightforward, three-dimensional, interactive understanding of the size and shape of the clivus, and its relationships with the surrounding blood vessels and bones. It also demonstrates simulated operational procedures such as opening the surgical window, measuring the exposure distance and angles, and determining the critical boundaries in relation to key structures such as the brainstem and arteries. Digitalized VR modeling appears to be helpful for understanding the anatomy of the clivus and its surgical approaches. |
---|---|
ISSN: | 1940-5901 1940-5901 |