Loading…
The in vivo role of PtdIns(3,4,5)P3 binding to PDK1 PH domain defined by knockin mutation
We generated homozygous knockin ES cells expressing a form of 3‐phosphoinositide‐dependent protein kinase‐1 (PDK1) with a mutation in its pleckstrin homology (PH) domain that abolishes phosphatidylinositol 3,4,5‐tris‐phosphate (PtdIns(3,4,5)P 3 ) binding, without affecting catalytic activity. In the...
Saved in:
Published in: | The EMBO journal 2004-05, Vol.23 (10), p.2071-2082 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5298-f99a4735776f24af2e97c3425fda47f6a5570aed8d04da7f721c615db121dc003 |
---|---|
cites | cdi_FETCH-LOGICAL-c5298-f99a4735776f24af2e97c3425fda47f6a5570aed8d04da7f721c615db121dc003 |
container_end_page | 2082 |
container_issue | 10 |
container_start_page | 2071 |
container_title | The EMBO journal |
container_volume | 23 |
creator | McManus, Edward J Collins, Barry J Ashby, Peter R Prescott, Alan R Murray-Tait, Victoria Armit, Laura J Arthur, J Simon C Alessi, Dario R |
description | We generated homozygous knockin ES cells expressing a form of 3‐phosphoinositide‐dependent protein kinase‐1 (PDK1) with a mutation in its pleckstrin homology (PH) domain that abolishes phosphatidylinositol 3,4,5‐tris‐phosphate (PtdIns(3,4,5)P
3
) binding, without affecting catalytic activity. In the knockin cells, protein kinase B (PKB) was not activated by IGF1, whereas ribosomal S6 kinase (RSK) was activated normally, indicating that PtdIns(3,4,5)P
3
binding to PDK1 is required for PKB but not RSK activation. Interestingly, amino acids and Rheb, but not IGF1, activated S6K in the knockin cells, supporting the idea that PtdIns(3,4,5)P
3
stimulates S6K through PKB‐mediated activation of Rheb. Employing PDK1 knockin cells in which either the PtdIns(3,4,5)P
3
binding or substrate‐docking ‘PIF pocket’ was disrupted, we established the roles that these domains play in regulating phosphorylation and stabilisation of protein kinase C isoforms. Moreover, mouse PDK1 knockin embryos in which either the PH domain or PIF pocket was disrupted died displaying differing phenotypes between E10.5 and E11.5. Although PDK1 plays roles in regulating cell size, cells derived from PH domain or PIF pocket knockin embryos were of normal size. These experiments establish the roles of the PDK1 regulatory domains and illustrate the power of knockin technology to probe the physiological function of protein–lipid and protein–protein interactions. |
doi_str_mv | 10.1038/sj.emboj.7600218 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_424399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71934980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5298-f99a4735776f24af2e97c3425fda47f6a5570aed8d04da7f721c615db121dc003</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSNERYfCnhWyWCCQmsHP2F50AUNfQ4ERKgJWlhM7U2cSu8TJlPn3pM2oLUiIlaXr8517rk6SPENwiiARb2I1tU0eqinPIMRIPEgmiGYwxZCzh8kE4gylFAm5mzyOsYIQMsHRo2QXMYQymIlJ8uP8wgLnwdqtA2hDbUEowaIzpz6-Ivt0n71eEJA7b5xfgi6AxfsPCCxOgAmNHjBjS-etAfkGrHwoVsOo6TvdueCfJDulrqN9un33kq9Hh-ezk_Ts8_Hp7O1ZWjAsRVpKqSknjPOsxFSX2EpeEIpZaYZ5mWnGONTWCAOp0bzkGBUZYiZHGJkCQrKXHIy-l33eWFNY37W6Vpeta3S7UUE79eePdxdqGdaKYkqkHPiXW74NP3sbO9W4WNi61t6GPiqOJKFSXC968ZewCn3rh9sUkgxnVNyI4Cgq2hBja8vbIAiq685UrNRNZ2rb2YA8v3_AHbAtaRDIUXDlarv5r6E6_PhufmeORjYOmF_a9l7ofwdKR8bFzv663afblco44Ux9-3Ss5rOjL9_FXChCfgMKVMO4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195264880</pqid></control><display><type>article</type><title>The in vivo role of PtdIns(3,4,5)P3 binding to PDK1 PH domain defined by knockin mutation</title><source>Open Access: PubMed Central</source><creator>McManus, Edward J ; Collins, Barry J ; Ashby, Peter R ; Prescott, Alan R ; Murray-Tait, Victoria ; Armit, Laura J ; Arthur, J Simon C ; Alessi, Dario R</creator><creatorcontrib>McManus, Edward J ; Collins, Barry J ; Ashby, Peter R ; Prescott, Alan R ; Murray-Tait, Victoria ; Armit, Laura J ; Arthur, J Simon C ; Alessi, Dario R</creatorcontrib><description>We generated homozygous knockin ES cells expressing a form of 3‐phosphoinositide‐dependent protein kinase‐1 (PDK1) with a mutation in its pleckstrin homology (PH) domain that abolishes phosphatidylinositol 3,4,5‐tris‐phosphate (PtdIns(3,4,5)P
3
) binding, without affecting catalytic activity. In the knockin cells, protein kinase B (PKB) was not activated by IGF1, whereas ribosomal S6 kinase (RSK) was activated normally, indicating that PtdIns(3,4,5)P
3
binding to PDK1 is required for PKB but not RSK activation. Interestingly, amino acids and Rheb, but not IGF1, activated S6K in the knockin cells, supporting the idea that PtdIns(3,4,5)P
3
stimulates S6K through PKB‐mediated activation of Rheb. Employing PDK1 knockin cells in which either the PtdIns(3,4,5)P
3
binding or substrate‐docking ‘PIF pocket’ was disrupted, we established the roles that these domains play in regulating phosphorylation and stabilisation of protein kinase C isoforms. Moreover, mouse PDK1 knockin embryos in which either the PH domain or PIF pocket was disrupted died displaying differing phenotypes between E10.5 and E11.5. Although PDK1 plays roles in regulating cell size, cells derived from PH domain or PIF pocket knockin embryos were of normal size. These experiments establish the roles of the PDK1 regulatory domains and illustrate the power of knockin technology to probe the physiological function of protein–lipid and protein–protein interactions.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/sj.emboj.7600218</identifier><identifier>PMID: 15116068</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>3-Phosphoinositide-Dependent Protein Kinases ; Amino acids ; Animals ; Cell Line ; EMBO37 ; Embryo Loss ; Embryo, Mammalian - abnormalities ; Embryo, Mammalian - anatomy & histology ; Embryo, Mammalian - physiology ; Embryos ; Enzyme Activation ; Isoenzymes - genetics ; Isoenzymes - metabolism ; Mice ; mTOR ; Mutation ; Phenotype ; Phosphatidylinositol Phosphates - metabolism ; Physiology ; PI 3-kinase ; PKB/Akt ; PKC ; Protein Binding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases - chemistry ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Proto-Oncogene Proteins - metabolism ; Proto-Oncogene Proteins c-akt ; Ribosomal Protein S6 Kinases, 90-kDa - metabolism ; RSK ; Stem Cells - cytology ; Stem Cells - physiology</subject><ispartof>The EMBO journal, 2004-05, Vol.23 (10), p.2071-2082</ispartof><rights>European Molecular Biology Organization 2004</rights><rights>Copyright © 2004 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group May 19, 2004</rights><rights>Copyright © 2004, European Molecular Biology Organization 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5298-f99a4735776f24af2e97c3425fda47f6a5570aed8d04da7f721c615db121dc003</citedby><cites>FETCH-LOGICAL-c5298-f99a4735776f24af2e97c3425fda47f6a5570aed8d04da7f721c615db121dc003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC424399/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC424399/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15116068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McManus, Edward J</creatorcontrib><creatorcontrib>Collins, Barry J</creatorcontrib><creatorcontrib>Ashby, Peter R</creatorcontrib><creatorcontrib>Prescott, Alan R</creatorcontrib><creatorcontrib>Murray-Tait, Victoria</creatorcontrib><creatorcontrib>Armit, Laura J</creatorcontrib><creatorcontrib>Arthur, J Simon C</creatorcontrib><creatorcontrib>Alessi, Dario R</creatorcontrib><title>The in vivo role of PtdIns(3,4,5)P3 binding to PDK1 PH domain defined by knockin mutation</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>We generated homozygous knockin ES cells expressing a form of 3‐phosphoinositide‐dependent protein kinase‐1 (PDK1) with a mutation in its pleckstrin homology (PH) domain that abolishes phosphatidylinositol 3,4,5‐tris‐phosphate (PtdIns(3,4,5)P
3
) binding, without affecting catalytic activity. In the knockin cells, protein kinase B (PKB) was not activated by IGF1, whereas ribosomal S6 kinase (RSK) was activated normally, indicating that PtdIns(3,4,5)P
3
binding to PDK1 is required for PKB but not RSK activation. Interestingly, amino acids and Rheb, but not IGF1, activated S6K in the knockin cells, supporting the idea that PtdIns(3,4,5)P
3
stimulates S6K through PKB‐mediated activation of Rheb. Employing PDK1 knockin cells in which either the PtdIns(3,4,5)P
3
binding or substrate‐docking ‘PIF pocket’ was disrupted, we established the roles that these domains play in regulating phosphorylation and stabilisation of protein kinase C isoforms. Moreover, mouse PDK1 knockin embryos in which either the PH domain or PIF pocket was disrupted died displaying differing phenotypes between E10.5 and E11.5. Although PDK1 plays roles in regulating cell size, cells derived from PH domain or PIF pocket knockin embryos were of normal size. These experiments establish the roles of the PDK1 regulatory domains and illustrate the power of knockin technology to probe the physiological function of protein–lipid and protein–protein interactions.</description><subject>3-Phosphoinositide-Dependent Protein Kinases</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Cell Line</subject><subject>EMBO37</subject><subject>Embryo Loss</subject><subject>Embryo, Mammalian - abnormalities</subject><subject>Embryo, Mammalian - anatomy & histology</subject><subject>Embryo, Mammalian - physiology</subject><subject>Embryos</subject><subject>Enzyme Activation</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>Mice</subject><subject>mTOR</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Phosphatidylinositol Phosphates - metabolism</subject><subject>Physiology</subject><subject>PI 3-kinase</subject><subject>PKB/Akt</subject><subject>PKC</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Protein-Serine-Threonine Kinases - chemistry</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-akt</subject><subject>Ribosomal Protein S6 Kinases, 90-kDa - metabolism</subject><subject>RSK</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - physiology</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUhSNERYfCnhWyWCCQmsHP2F50AUNfQ4ERKgJWlhM7U2cSu8TJlPn3pM2oLUiIlaXr8517rk6SPENwiiARb2I1tU0eqinPIMRIPEgmiGYwxZCzh8kE4gylFAm5mzyOsYIQMsHRo2QXMYQymIlJ8uP8wgLnwdqtA2hDbUEowaIzpz6-Ivt0n71eEJA7b5xfgi6AxfsPCCxOgAmNHjBjS-etAfkGrHwoVsOo6TvdueCfJDulrqN9un33kq9Hh-ezk_Ts8_Hp7O1ZWjAsRVpKqSknjPOsxFSX2EpeEIpZaYZ5mWnGONTWCAOp0bzkGBUZYiZHGJkCQrKXHIy-l33eWFNY37W6Vpeta3S7UUE79eePdxdqGdaKYkqkHPiXW74NP3sbO9W4WNi61t6GPiqOJKFSXC968ZewCn3rh9sUkgxnVNyI4Cgq2hBja8vbIAiq685UrNRNZ2rb2YA8v3_AHbAtaRDIUXDlarv5r6E6_PhufmeORjYOmF_a9l7ofwdKR8bFzv663afblco44Ux9-3Ss5rOjL9_FXChCfgMKVMO4</recordid><startdate>20040519</startdate><enddate>20040519</enddate><creator>McManus, Edward J</creator><creator>Collins, Barry J</creator><creator>Ashby, Peter R</creator><creator>Prescott, Alan R</creator><creator>Murray-Tait, Victoria</creator><creator>Armit, Laura J</creator><creator>Arthur, J Simon C</creator><creator>Alessi, Dario R</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040519</creationdate><title>The in vivo role of PtdIns(3,4,5)P3 binding to PDK1 PH domain defined by knockin mutation</title><author>McManus, Edward J ; Collins, Barry J ; Ashby, Peter R ; Prescott, Alan R ; Murray-Tait, Victoria ; Armit, Laura J ; Arthur, J Simon C ; Alessi, Dario R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5298-f99a4735776f24af2e97c3425fda47f6a5570aed8d04da7f721c615db121dc003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>3-Phosphoinositide-Dependent Protein Kinases</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Cell Line</topic><topic>EMBO37</topic><topic>Embryo Loss</topic><topic>Embryo, Mammalian - abnormalities</topic><topic>Embryo, Mammalian - anatomy & histology</topic><topic>Embryo, Mammalian - physiology</topic><topic>Embryos</topic><topic>Enzyme Activation</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>Mice</topic><topic>mTOR</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Phosphatidylinositol Phosphates - metabolism</topic><topic>Physiology</topic><topic>PI 3-kinase</topic><topic>PKB/Akt</topic><topic>PKC</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Protein-Serine-Threonine Kinases - chemistry</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-akt</topic><topic>Ribosomal Protein S6 Kinases, 90-kDa - metabolism</topic><topic>RSK</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McManus, Edward J</creatorcontrib><creatorcontrib>Collins, Barry J</creatorcontrib><creatorcontrib>Ashby, Peter R</creatorcontrib><creatorcontrib>Prescott, Alan R</creatorcontrib><creatorcontrib>Murray-Tait, Victoria</creatorcontrib><creatorcontrib>Armit, Laura J</creatorcontrib><creatorcontrib>Arthur, J Simon C</creatorcontrib><creatorcontrib>Alessi, Dario R</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McManus, Edward J</au><au>Collins, Barry J</au><au>Ashby, Peter R</au><au>Prescott, Alan R</au><au>Murray-Tait, Victoria</au><au>Armit, Laura J</au><au>Arthur, J Simon C</au><au>Alessi, Dario R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The in vivo role of PtdIns(3,4,5)P3 binding to PDK1 PH domain defined by knockin mutation</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2004-05-19</date><risdate>2004</risdate><volume>23</volume><issue>10</issue><spage>2071</spage><epage>2082</epage><pages>2071-2082</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>We generated homozygous knockin ES cells expressing a form of 3‐phosphoinositide‐dependent protein kinase‐1 (PDK1) with a mutation in its pleckstrin homology (PH) domain that abolishes phosphatidylinositol 3,4,5‐tris‐phosphate (PtdIns(3,4,5)P
3
) binding, without affecting catalytic activity. In the knockin cells, protein kinase B (PKB) was not activated by IGF1, whereas ribosomal S6 kinase (RSK) was activated normally, indicating that PtdIns(3,4,5)P
3
binding to PDK1 is required for PKB but not RSK activation. Interestingly, amino acids and Rheb, but not IGF1, activated S6K in the knockin cells, supporting the idea that PtdIns(3,4,5)P
3
stimulates S6K through PKB‐mediated activation of Rheb. Employing PDK1 knockin cells in which either the PtdIns(3,4,5)P
3
binding or substrate‐docking ‘PIF pocket’ was disrupted, we established the roles that these domains play in regulating phosphorylation and stabilisation of protein kinase C isoforms. Moreover, mouse PDK1 knockin embryos in which either the PH domain or PIF pocket was disrupted died displaying differing phenotypes between E10.5 and E11.5. Although PDK1 plays roles in regulating cell size, cells derived from PH domain or PIF pocket knockin embryos were of normal size. These experiments establish the roles of the PDK1 regulatory domains and illustrate the power of knockin technology to probe the physiological function of protein–lipid and protein–protein interactions.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>15116068</pmid><doi>10.1038/sj.emboj.7600218</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2004-05, Vol.23 (10), p.2071-2082 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_424399 |
source | Open Access: PubMed Central |
subjects | 3-Phosphoinositide-Dependent Protein Kinases Amino acids Animals Cell Line EMBO37 Embryo Loss Embryo, Mammalian - abnormalities Embryo, Mammalian - anatomy & histology Embryo, Mammalian - physiology Embryos Enzyme Activation Isoenzymes - genetics Isoenzymes - metabolism Mice mTOR Mutation Phenotype Phosphatidylinositol Phosphates - metabolism Physiology PI 3-kinase PKB/Akt PKC Protein Binding Protein Structure, Tertiary Protein-Serine-Threonine Kinases - chemistry Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Proto-Oncogene Proteins - metabolism Proto-Oncogene Proteins c-akt Ribosomal Protein S6 Kinases, 90-kDa - metabolism RSK Stem Cells - cytology Stem Cells - physiology |
title | The in vivo role of PtdIns(3,4,5)P3 binding to PDK1 PH domain defined by knockin mutation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A04%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20in%20vivo%20role%20of%20PtdIns(3,4,5)P3%20binding%20to%20PDK1%20PH%20domain%20defined%20by%20knockin%20mutation&rft.jtitle=The%20EMBO%20journal&rft.au=McManus,%20Edward%20J&rft.date=2004-05-19&rft.volume=23&rft.issue=10&rft.spage=2071&rft.epage=2082&rft.pages=2071-2082&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/sj.emboj.7600218&rft_dat=%3Cproquest_pubme%3E71934980%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5298-f99a4735776f24af2e97c3425fda47f6a5570aed8d04da7f721c615db121dc003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195264880&rft_id=info:pmid/15116068&rfr_iscdi=true |