Loading…
Controlling Ligand Surface Density Optimizes Nanoparticle Binding to ICAM-1
During infection, pathogens utilize surface receptors to gain entry into intracellular compartments. Multiple receptor–ligand interactions that lead to pathogen internalization have been identified and the importance of multivalent ligand binding as a means to facilitate internalization has emerged....
Saved in:
Published in: | Journal of pharmaceutical sciences 2011-03, Vol.100 (3), p.1045-1056 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6202-29bd72bea2c18d91ab76ded417b591cc0fcb427bd20dc63673a6b62f095ef26a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c6202-29bd72bea2c18d91ab76ded417b591cc0fcb427bd20dc63673a6b62f095ef26a3 |
container_end_page | 1056 |
container_issue | 3 |
container_start_page | 1045 |
container_title | Journal of pharmaceutical sciences |
container_volume | 100 |
creator | Fakhari, Amir Baoum, Abdulgader Siahaan, Teruna J. Le, Khoi Ba Berkland, Cory |
description | During infection, pathogens utilize surface receptors to gain entry into intracellular compartments. Multiple receptor–ligand interactions that lead to pathogen internalization have been identified and the importance of multivalent ligand binding as a means to facilitate internalization has emerged. The effect of ligand density, however, is less well known. In this study, ligand density was examined using poly(DL-lactic-co-glycolic acid) nanoparticles (PLGA NPs). A cyclic peptide, cLABL, was used as a targeting moiety, as it is a known ligand for intercellular cell adhesion molecule-1 (ICAM-1). To modulate the number of reactive sites on the surface of PLGA NPs, modified Pluronic® with carboxyl groups and Pluronic® with hydroxyl groups were combined in different ratios and the particle properties were examined. Utilizing a surfactant mixture directly affected the particle charge and the number of reactive sites for cLABL conjugation. The surface density of cLABL peptide increased as the relative amount of reactive Pluronic® was increased. Studies using carcinomic human alveolar basal epithelial cells (A549) showed that cLABL density might be optimized to improve cellular uptake. These results complement other studies, suggesting that surface density of the targeting moiety on the NP surface should be considered to enhance the effect of ligands used for cell targeting. |
doi_str_mv | 10.1002/jps.22342 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4245447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022354915322565</els_id><sourcerecordid>3278507581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6202-29bd72bea2c18d91ab76ded417b591cc0fcb427bd20dc63673a6b62f095ef26a3</originalsourceid><addsrcrecordid>eNp10V1v0zAUBuAIgVgZXPAHUCSEJi6y2Y7tJDdI0LHxUTqkgri0HPukuEvtzE4G5dfjLl35EFz54jzn2MdvkjzG6BgjRE5WXTgmJKfkTjLBjKCMI1zcTSaxRrKc0eogeRDCCiHEEWP3kwOCKkJKnE-S91Nne-_a1thlOjNLaXW6GHwjFaSnYIPpN-lF15u1-QEhnUvrOul7o1pIXxmrt129S99OX37I8MPkXiPbAI9252Hy-ez1p-mbbHZxHsUsU5wgkpGq1gWpQRKFS11hWRdcg6a4qFmFlUKNqikpak2QVjznRS55zUmDKgYN4TI_TF6Mc7uhXoNWEDeQrei8WUu_EU4a8WfFmq9i6a4FJZRRWsQBR7sB3l0NEHqxNkFB20oLbgiipCUvS1pUUT79S67c4G3cTmCGi_zGRfV8VMq7EDw0-7dgJLYJiZiQuEko2ie_P34vbyOJ4NkOyKBk23hplQm_XF5hXtGtOxndN9PC5v83incfF7dXZ2OHCT1833dIfyniJxdMfJmfi9PqbD5fMCTK6PPRQwzz2oAXQRmwCrTxoHqhnfnHgj8BKBHH_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1517386884</pqid></control><display><type>article</type><title>Controlling Ligand Surface Density Optimizes Nanoparticle Binding to ICAM-1</title><source>ScienceDirect®</source><source>Wiley Online Library (Online service)</source><creator>Fakhari, Amir ; Baoum, Abdulgader ; Siahaan, Teruna J. ; Le, Khoi Ba ; Berkland, Cory</creator><creatorcontrib>Fakhari, Amir ; Baoum, Abdulgader ; Siahaan, Teruna J. ; Le, Khoi Ba ; Berkland, Cory</creatorcontrib><description>During infection, pathogens utilize surface receptors to gain entry into intracellular compartments. Multiple receptor–ligand interactions that lead to pathogen internalization have been identified and the importance of multivalent ligand binding as a means to facilitate internalization has emerged. The effect of ligand density, however, is less well known. In this study, ligand density was examined using poly(DL-lactic-co-glycolic acid) nanoparticles (PLGA NPs). A cyclic peptide, cLABL, was used as a targeting moiety, as it is a known ligand for intercellular cell adhesion molecule-1 (ICAM-1). To modulate the number of reactive sites on the surface of PLGA NPs, modified Pluronic® with carboxyl groups and Pluronic® with hydroxyl groups were combined in different ratios and the particle properties were examined. Utilizing a surfactant mixture directly affected the particle charge and the number of reactive sites for cLABL conjugation. The surface density of cLABL peptide increased as the relative amount of reactive Pluronic® was increased. Studies using carcinomic human alveolar basal epithelial cells (A549) showed that cLABL density might be optimized to improve cellular uptake. These results complement other studies, suggesting that surface density of the targeting moiety on the NP surface should be considered to enhance the effect of ligands used for cell targeting.</description><identifier>ISSN: 0022-3549</identifier><identifier>ISSN: 1520-6017</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1002/jps.22342</identifier><identifier>PMID: 20922813</identifier><identifier>CODEN: JPMSAE</identifier><language>eng</language><publisher>Hoboken: Elsevier Inc</publisher><subject>binding and cellular uptake ; Biological and medical sciences ; Cell Line, Tumor ; cLABL ; Drug Carriers ; Drug Delivery Systems ; General pharmacology ; Humans ; Intercellular Adhesion Molecule-1 - chemistry ; Intercellular Adhesion Molecule-1 - metabolism ; Lactic Acid ; ligand density ; Ligands ; Medical sciences ; Nanoparticles - chemistry ; Particle Size ; Peptides, Cyclic - chemistry ; Peptides, Cyclic - metabolism ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Pluronic ; Poloxamer - analogs & derivatives ; Poloxamer - chemistry ; poly(DL-lactic-co-glycolic acid) nanoparticles ; Polyglycolic Acid ; Polylactic Acid-Polyglycolic Acid Copolymer ; Surface Properties ; Surface-Active Agents</subject><ispartof>Journal of pharmaceutical sciences, 2011-03, Vol.100 (3), p.1045-1056</ispartof><rights>2010 Wiley Periodicals, Inc. and the American Pharmacists Association</rights><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6202-29bd72bea2c18d91ab76ded417b591cc0fcb427bd20dc63673a6b62f095ef26a3</citedby><cites>FETCH-LOGICAL-c6202-29bd72bea2c18d91ab76ded417b591cc0fcb427bd20dc63673a6b62f095ef26a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjps.22342$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022354915322565$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,3549,27924,27925,45574,45575,45780</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23916943$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20922813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fakhari, Amir</creatorcontrib><creatorcontrib>Baoum, Abdulgader</creatorcontrib><creatorcontrib>Siahaan, Teruna J.</creatorcontrib><creatorcontrib>Le, Khoi Ba</creatorcontrib><creatorcontrib>Berkland, Cory</creatorcontrib><title>Controlling Ligand Surface Density Optimizes Nanoparticle Binding to ICAM-1</title><title>Journal of pharmaceutical sciences</title><addtitle>J. Pharm. Sci</addtitle><description>During infection, pathogens utilize surface receptors to gain entry into intracellular compartments. Multiple receptor–ligand interactions that lead to pathogen internalization have been identified and the importance of multivalent ligand binding as a means to facilitate internalization has emerged. The effect of ligand density, however, is less well known. In this study, ligand density was examined using poly(DL-lactic-co-glycolic acid) nanoparticles (PLGA NPs). A cyclic peptide, cLABL, was used as a targeting moiety, as it is a known ligand for intercellular cell adhesion molecule-1 (ICAM-1). To modulate the number of reactive sites on the surface of PLGA NPs, modified Pluronic® with carboxyl groups and Pluronic® with hydroxyl groups were combined in different ratios and the particle properties were examined. Utilizing a surfactant mixture directly affected the particle charge and the number of reactive sites for cLABL conjugation. The surface density of cLABL peptide increased as the relative amount of reactive Pluronic® was increased. Studies using carcinomic human alveolar basal epithelial cells (A549) showed that cLABL density might be optimized to improve cellular uptake. These results complement other studies, suggesting that surface density of the targeting moiety on the NP surface should be considered to enhance the effect of ligands used for cell targeting.</description><subject>binding and cellular uptake</subject><subject>Biological and medical sciences</subject><subject>Cell Line, Tumor</subject><subject>cLABL</subject><subject>Drug Carriers</subject><subject>Drug Delivery Systems</subject><subject>General pharmacology</subject><subject>Humans</subject><subject>Intercellular Adhesion Molecule-1 - chemistry</subject><subject>Intercellular Adhesion Molecule-1 - metabolism</subject><subject>Lactic Acid</subject><subject>ligand density</subject><subject>Ligands</subject><subject>Medical sciences</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Peptides, Cyclic - chemistry</subject><subject>Peptides, Cyclic - metabolism</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Pluronic</subject><subject>Poloxamer - analogs & derivatives</subject><subject>Poloxamer - chemistry</subject><subject>poly(DL-lactic-co-glycolic acid) nanoparticles</subject><subject>Polyglycolic Acid</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer</subject><subject>Surface Properties</subject><subject>Surface-Active Agents</subject><issn>0022-3549</issn><issn>1520-6017</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp10V1v0zAUBuAIgVgZXPAHUCSEJi6y2Y7tJDdI0LHxUTqkgri0HPukuEvtzE4G5dfjLl35EFz54jzn2MdvkjzG6BgjRE5WXTgmJKfkTjLBjKCMI1zcTSaxRrKc0eogeRDCCiHEEWP3kwOCKkJKnE-S91Nne-_a1thlOjNLaXW6GHwjFaSnYIPpN-lF15u1-QEhnUvrOul7o1pIXxmrt129S99OX37I8MPkXiPbAI9252Hy-ez1p-mbbHZxHsUsU5wgkpGq1gWpQRKFS11hWRdcg6a4qFmFlUKNqikpak2QVjznRS55zUmDKgYN4TI_TF6Mc7uhXoNWEDeQrei8WUu_EU4a8WfFmq9i6a4FJZRRWsQBR7sB3l0NEHqxNkFB20oLbgiipCUvS1pUUT79S67c4G3cTmCGi_zGRfV8VMq7EDw0-7dgJLYJiZiQuEko2ie_P34vbyOJ4NkOyKBk23hplQm_XF5hXtGtOxndN9PC5v83incfF7dXZ2OHCT1833dIfyniJxdMfJmfi9PqbD5fMCTK6PPRQwzz2oAXQRmwCrTxoHqhnfnHgj8BKBHH_Q</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Fakhari, Amir</creator><creator>Baoum, Abdulgader</creator><creator>Siahaan, Teruna J.</creator><creator>Le, Khoi Ba</creator><creator>Berkland, Cory</creator><general>Elsevier Inc</general><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Pharmaceutical Association</general><general>Elsevier Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201103</creationdate><title>Controlling Ligand Surface Density Optimizes Nanoparticle Binding to ICAM-1</title><author>Fakhari, Amir ; Baoum, Abdulgader ; Siahaan, Teruna J. ; Le, Khoi Ba ; Berkland, Cory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6202-29bd72bea2c18d91ab76ded417b591cc0fcb427bd20dc63673a6b62f095ef26a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>binding and cellular uptake</topic><topic>Biological and medical sciences</topic><topic>Cell Line, Tumor</topic><topic>cLABL</topic><topic>Drug Carriers</topic><topic>Drug Delivery Systems</topic><topic>General pharmacology</topic><topic>Humans</topic><topic>Intercellular Adhesion Molecule-1 - chemistry</topic><topic>Intercellular Adhesion Molecule-1 - metabolism</topic><topic>Lactic Acid</topic><topic>ligand density</topic><topic>Ligands</topic><topic>Medical sciences</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Peptides, Cyclic - chemistry</topic><topic>Peptides, Cyclic - metabolism</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Pluronic</topic><topic>Poloxamer - analogs & derivatives</topic><topic>Poloxamer - chemistry</topic><topic>poly(DL-lactic-co-glycolic acid) nanoparticles</topic><topic>Polyglycolic Acid</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer</topic><topic>Surface Properties</topic><topic>Surface-Active Agents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fakhari, Amir</creatorcontrib><creatorcontrib>Baoum, Abdulgader</creatorcontrib><creatorcontrib>Siahaan, Teruna J.</creatorcontrib><creatorcontrib>Le, Khoi Ba</creatorcontrib><creatorcontrib>Berkland, Cory</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fakhari, Amir</au><au>Baoum, Abdulgader</au><au>Siahaan, Teruna J.</au><au>Le, Khoi Ba</au><au>Berkland, Cory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Ligand Surface Density Optimizes Nanoparticle Binding to ICAM-1</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><addtitle>J. Pharm. Sci</addtitle><date>2011-03</date><risdate>2011</risdate><volume>100</volume><issue>3</issue><spage>1045</spage><epage>1056</epage><pages>1045-1056</pages><issn>0022-3549</issn><issn>1520-6017</issn><eissn>1520-6017</eissn><coden>JPMSAE</coden><abstract>During infection, pathogens utilize surface receptors to gain entry into intracellular compartments. Multiple receptor–ligand interactions that lead to pathogen internalization have been identified and the importance of multivalent ligand binding as a means to facilitate internalization has emerged. The effect of ligand density, however, is less well known. In this study, ligand density was examined using poly(DL-lactic-co-glycolic acid) nanoparticles (PLGA NPs). A cyclic peptide, cLABL, was used as a targeting moiety, as it is a known ligand for intercellular cell adhesion molecule-1 (ICAM-1). To modulate the number of reactive sites on the surface of PLGA NPs, modified Pluronic® with carboxyl groups and Pluronic® with hydroxyl groups were combined in different ratios and the particle properties were examined. Utilizing a surfactant mixture directly affected the particle charge and the number of reactive sites for cLABL conjugation. The surface density of cLABL peptide increased as the relative amount of reactive Pluronic® was increased. Studies using carcinomic human alveolar basal epithelial cells (A549) showed that cLABL density might be optimized to improve cellular uptake. These results complement other studies, suggesting that surface density of the targeting moiety on the NP surface should be considered to enhance the effect of ligands used for cell targeting.</abstract><cop>Hoboken</cop><pub>Elsevier Inc</pub><pmid>20922813</pmid><doi>10.1002/jps.22342</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3549 |
ispartof | Journal of pharmaceutical sciences, 2011-03, Vol.100 (3), p.1045-1056 |
issn | 0022-3549 1520-6017 1520-6017 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4245447 |
source | ScienceDirect®; Wiley Online Library (Online service) |
subjects | binding and cellular uptake Biological and medical sciences Cell Line, Tumor cLABL Drug Carriers Drug Delivery Systems General pharmacology Humans Intercellular Adhesion Molecule-1 - chemistry Intercellular Adhesion Molecule-1 - metabolism Lactic Acid ligand density Ligands Medical sciences Nanoparticles - chemistry Particle Size Peptides, Cyclic - chemistry Peptides, Cyclic - metabolism Pharmaceutical technology. Pharmaceutical industry Pharmacology. Drug treatments Pluronic Poloxamer - analogs & derivatives Poloxamer - chemistry poly(DL-lactic-co-glycolic acid) nanoparticles Polyglycolic Acid Polylactic Acid-Polyglycolic Acid Copolymer Surface Properties Surface-Active Agents |
title | Controlling Ligand Surface Density Optimizes Nanoparticle Binding to ICAM-1 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A38%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Ligand%20Surface%20Density%20Optimizes%20Nanoparticle%20Binding%20to%20ICAM-1&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Fakhari,%20Amir&rft.date=2011-03&rft.volume=100&rft.issue=3&rft.spage=1045&rft.epage=1056&rft.pages=1045-1056&rft.issn=0022-3549&rft.eissn=1520-6017&rft.coden=JPMSAE&rft_id=info:doi/10.1002/jps.22342&rft_dat=%3Cproquest_pubme%3E3278507581%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6202-29bd72bea2c18d91ab76ded417b591cc0fcb427bd20dc63673a6b62f095ef26a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1517386884&rft_id=info:pmid/20922813&rfr_iscdi=true |