Loading…

Controlling Ligand Surface Density Optimizes Nanoparticle Binding to ICAM-1

During infection, pathogens utilize surface receptors to gain entry into intracellular compartments. Multiple receptor–ligand interactions that lead to pathogen internalization have been identified and the importance of multivalent ligand binding as a means to facilitate internalization has emerged....

Full description

Saved in:
Bibliographic Details
Published in:Journal of pharmaceutical sciences 2011-03, Vol.100 (3), p.1045-1056
Main Authors: Fakhari, Amir, Baoum, Abdulgader, Siahaan, Teruna J., Le, Khoi Ba, Berkland, Cory
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6202-29bd72bea2c18d91ab76ded417b591cc0fcb427bd20dc63673a6b62f095ef26a3
cites cdi_FETCH-LOGICAL-c6202-29bd72bea2c18d91ab76ded417b591cc0fcb427bd20dc63673a6b62f095ef26a3
container_end_page 1056
container_issue 3
container_start_page 1045
container_title Journal of pharmaceutical sciences
container_volume 100
creator Fakhari, Amir
Baoum, Abdulgader
Siahaan, Teruna J.
Le, Khoi Ba
Berkland, Cory
description During infection, pathogens utilize surface receptors to gain entry into intracellular compartments. Multiple receptor–ligand interactions that lead to pathogen internalization have been identified and the importance of multivalent ligand binding as a means to facilitate internalization has emerged. The effect of ligand density, however, is less well known. In this study, ligand density was examined using poly(DL-lactic-co-glycolic acid) nanoparticles (PLGA NPs). A cyclic peptide, cLABL, was used as a targeting moiety, as it is a known ligand for intercellular cell adhesion molecule-1 (ICAM-1). To modulate the number of reactive sites on the surface of PLGA NPs, modified Pluronic® with carboxyl groups and Pluronic® with hydroxyl groups were combined in different ratios and the particle properties were examined. Utilizing a surfactant mixture directly affected the particle charge and the number of reactive sites for cLABL conjugation. The surface density of cLABL peptide increased as the relative amount of reactive Pluronic® was increased. Studies using carcinomic human alveolar basal epithelial cells (A549) showed that cLABL density might be optimized to improve cellular uptake. These results complement other studies, suggesting that surface density of the targeting moiety on the NP surface should be considered to enhance the effect of ligands used for cell targeting.
doi_str_mv 10.1002/jps.22342
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4245447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022354915322565</els_id><sourcerecordid>3278507581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6202-29bd72bea2c18d91ab76ded417b591cc0fcb427bd20dc63673a6b62f095ef26a3</originalsourceid><addsrcrecordid>eNp10V1v0zAUBuAIgVgZXPAHUCSEJi6y2Y7tJDdI0LHxUTqkgri0HPukuEvtzE4G5dfjLl35EFz54jzn2MdvkjzG6BgjRE5WXTgmJKfkTjLBjKCMI1zcTSaxRrKc0eogeRDCCiHEEWP3kwOCKkJKnE-S91Nne-_a1thlOjNLaXW6GHwjFaSnYIPpN-lF15u1-QEhnUvrOul7o1pIXxmrt129S99OX37I8MPkXiPbAI9252Hy-ez1p-mbbHZxHsUsU5wgkpGq1gWpQRKFS11hWRdcg6a4qFmFlUKNqikpak2QVjznRS55zUmDKgYN4TI_TF6Mc7uhXoNWEDeQrei8WUu_EU4a8WfFmq9i6a4FJZRRWsQBR7sB3l0NEHqxNkFB20oLbgiipCUvS1pUUT79S67c4G3cTmCGi_zGRfV8VMq7EDw0-7dgJLYJiZiQuEko2ie_P34vbyOJ4NkOyKBk23hplQm_XF5hXtGtOxndN9PC5v83incfF7dXZ2OHCT1833dIfyniJxdMfJmfi9PqbD5fMCTK6PPRQwzz2oAXQRmwCrTxoHqhnfnHgj8BKBHH_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1517386884</pqid></control><display><type>article</type><title>Controlling Ligand Surface Density Optimizes Nanoparticle Binding to ICAM-1</title><source>ScienceDirect®</source><source>Wiley Online Library (Online service)</source><creator>Fakhari, Amir ; Baoum, Abdulgader ; Siahaan, Teruna J. ; Le, Khoi Ba ; Berkland, Cory</creator><creatorcontrib>Fakhari, Amir ; Baoum, Abdulgader ; Siahaan, Teruna J. ; Le, Khoi Ba ; Berkland, Cory</creatorcontrib><description>During infection, pathogens utilize surface receptors to gain entry into intracellular compartments. Multiple receptor–ligand interactions that lead to pathogen internalization have been identified and the importance of multivalent ligand binding as a means to facilitate internalization has emerged. The effect of ligand density, however, is less well known. In this study, ligand density was examined using poly(DL-lactic-co-glycolic acid) nanoparticles (PLGA NPs). A cyclic peptide, cLABL, was used as a targeting moiety, as it is a known ligand for intercellular cell adhesion molecule-1 (ICAM-1). To modulate the number of reactive sites on the surface of PLGA NPs, modified Pluronic® with carboxyl groups and Pluronic® with hydroxyl groups were combined in different ratios and the particle properties were examined. Utilizing a surfactant mixture directly affected the particle charge and the number of reactive sites for cLABL conjugation. The surface density of cLABL peptide increased as the relative amount of reactive Pluronic® was increased. Studies using carcinomic human alveolar basal epithelial cells (A549) showed that cLABL density might be optimized to improve cellular uptake. These results complement other studies, suggesting that surface density of the targeting moiety on the NP surface should be considered to enhance the effect of ligands used for cell targeting.</description><identifier>ISSN: 0022-3549</identifier><identifier>ISSN: 1520-6017</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1002/jps.22342</identifier><identifier>PMID: 20922813</identifier><identifier>CODEN: JPMSAE</identifier><language>eng</language><publisher>Hoboken: Elsevier Inc</publisher><subject>binding and cellular uptake ; Biological and medical sciences ; Cell Line, Tumor ; cLABL ; Drug Carriers ; Drug Delivery Systems ; General pharmacology ; Humans ; Intercellular Adhesion Molecule-1 - chemistry ; Intercellular Adhesion Molecule-1 - metabolism ; Lactic Acid ; ligand density ; Ligands ; Medical sciences ; Nanoparticles - chemistry ; Particle Size ; Peptides, Cyclic - chemistry ; Peptides, Cyclic - metabolism ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Pluronic ; Poloxamer - analogs &amp; derivatives ; Poloxamer - chemistry ; poly(DL-lactic-co-glycolic acid) nanoparticles ; Polyglycolic Acid ; Polylactic Acid-Polyglycolic Acid Copolymer ; Surface Properties ; Surface-Active Agents</subject><ispartof>Journal of pharmaceutical sciences, 2011-03, Vol.100 (3), p.1045-1056</ispartof><rights>2010 Wiley Periodicals, Inc. and the American Pharmacists Association</rights><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6202-29bd72bea2c18d91ab76ded417b591cc0fcb427bd20dc63673a6b62f095ef26a3</citedby><cites>FETCH-LOGICAL-c6202-29bd72bea2c18d91ab76ded417b591cc0fcb427bd20dc63673a6b62f095ef26a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjps.22342$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022354915322565$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,3549,27924,27925,45574,45575,45780</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23916943$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20922813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fakhari, Amir</creatorcontrib><creatorcontrib>Baoum, Abdulgader</creatorcontrib><creatorcontrib>Siahaan, Teruna J.</creatorcontrib><creatorcontrib>Le, Khoi Ba</creatorcontrib><creatorcontrib>Berkland, Cory</creatorcontrib><title>Controlling Ligand Surface Density Optimizes Nanoparticle Binding to ICAM-1</title><title>Journal of pharmaceutical sciences</title><addtitle>J. Pharm. Sci</addtitle><description>During infection, pathogens utilize surface receptors to gain entry into intracellular compartments. Multiple receptor–ligand interactions that lead to pathogen internalization have been identified and the importance of multivalent ligand binding as a means to facilitate internalization has emerged. The effect of ligand density, however, is less well known. In this study, ligand density was examined using poly(DL-lactic-co-glycolic acid) nanoparticles (PLGA NPs). A cyclic peptide, cLABL, was used as a targeting moiety, as it is a known ligand for intercellular cell adhesion molecule-1 (ICAM-1). To modulate the number of reactive sites on the surface of PLGA NPs, modified Pluronic® with carboxyl groups and Pluronic® with hydroxyl groups were combined in different ratios and the particle properties were examined. Utilizing a surfactant mixture directly affected the particle charge and the number of reactive sites for cLABL conjugation. The surface density of cLABL peptide increased as the relative amount of reactive Pluronic® was increased. Studies using carcinomic human alveolar basal epithelial cells (A549) showed that cLABL density might be optimized to improve cellular uptake. These results complement other studies, suggesting that surface density of the targeting moiety on the NP surface should be considered to enhance the effect of ligands used for cell targeting.</description><subject>binding and cellular uptake</subject><subject>Biological and medical sciences</subject><subject>Cell Line, Tumor</subject><subject>cLABL</subject><subject>Drug Carriers</subject><subject>Drug Delivery Systems</subject><subject>General pharmacology</subject><subject>Humans</subject><subject>Intercellular Adhesion Molecule-1 - chemistry</subject><subject>Intercellular Adhesion Molecule-1 - metabolism</subject><subject>Lactic Acid</subject><subject>ligand density</subject><subject>Ligands</subject><subject>Medical sciences</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Peptides, Cyclic - chemistry</subject><subject>Peptides, Cyclic - metabolism</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Pluronic</subject><subject>Poloxamer - analogs &amp; derivatives</subject><subject>Poloxamer - chemistry</subject><subject>poly(DL-lactic-co-glycolic acid) nanoparticles</subject><subject>Polyglycolic Acid</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer</subject><subject>Surface Properties</subject><subject>Surface-Active Agents</subject><issn>0022-3549</issn><issn>1520-6017</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp10V1v0zAUBuAIgVgZXPAHUCSEJi6y2Y7tJDdI0LHxUTqkgri0HPukuEvtzE4G5dfjLl35EFz54jzn2MdvkjzG6BgjRE5WXTgmJKfkTjLBjKCMI1zcTSaxRrKc0eogeRDCCiHEEWP3kwOCKkJKnE-S91Nne-_a1thlOjNLaXW6GHwjFaSnYIPpN-lF15u1-QEhnUvrOul7o1pIXxmrt129S99OX37I8MPkXiPbAI9252Hy-ez1p-mbbHZxHsUsU5wgkpGq1gWpQRKFS11hWRdcg6a4qFmFlUKNqikpak2QVjznRS55zUmDKgYN4TI_TF6Mc7uhXoNWEDeQrei8WUu_EU4a8WfFmq9i6a4FJZRRWsQBR7sB3l0NEHqxNkFB20oLbgiipCUvS1pUUT79S67c4G3cTmCGi_zGRfV8VMq7EDw0-7dgJLYJiZiQuEko2ie_P34vbyOJ4NkOyKBk23hplQm_XF5hXtGtOxndN9PC5v83incfF7dXZ2OHCT1833dIfyniJxdMfJmfi9PqbD5fMCTK6PPRQwzz2oAXQRmwCrTxoHqhnfnHgj8BKBHH_Q</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Fakhari, Amir</creator><creator>Baoum, Abdulgader</creator><creator>Siahaan, Teruna J.</creator><creator>Le, Khoi Ba</creator><creator>Berkland, Cory</creator><general>Elsevier Inc</general><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Pharmaceutical Association</general><general>Elsevier Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201103</creationdate><title>Controlling Ligand Surface Density Optimizes Nanoparticle Binding to ICAM-1</title><author>Fakhari, Amir ; Baoum, Abdulgader ; Siahaan, Teruna J. ; Le, Khoi Ba ; Berkland, Cory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6202-29bd72bea2c18d91ab76ded417b591cc0fcb427bd20dc63673a6b62f095ef26a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>binding and cellular uptake</topic><topic>Biological and medical sciences</topic><topic>Cell Line, Tumor</topic><topic>cLABL</topic><topic>Drug Carriers</topic><topic>Drug Delivery Systems</topic><topic>General pharmacology</topic><topic>Humans</topic><topic>Intercellular Adhesion Molecule-1 - chemistry</topic><topic>Intercellular Adhesion Molecule-1 - metabolism</topic><topic>Lactic Acid</topic><topic>ligand density</topic><topic>Ligands</topic><topic>Medical sciences</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Peptides, Cyclic - chemistry</topic><topic>Peptides, Cyclic - metabolism</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Pluronic</topic><topic>Poloxamer - analogs &amp; derivatives</topic><topic>Poloxamer - chemistry</topic><topic>poly(DL-lactic-co-glycolic acid) nanoparticles</topic><topic>Polyglycolic Acid</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer</topic><topic>Surface Properties</topic><topic>Surface-Active Agents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fakhari, Amir</creatorcontrib><creatorcontrib>Baoum, Abdulgader</creatorcontrib><creatorcontrib>Siahaan, Teruna J.</creatorcontrib><creatorcontrib>Le, Khoi Ba</creatorcontrib><creatorcontrib>Berkland, Cory</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fakhari, Amir</au><au>Baoum, Abdulgader</au><au>Siahaan, Teruna J.</au><au>Le, Khoi Ba</au><au>Berkland, Cory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Ligand Surface Density Optimizes Nanoparticle Binding to ICAM-1</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><addtitle>J. Pharm. Sci</addtitle><date>2011-03</date><risdate>2011</risdate><volume>100</volume><issue>3</issue><spage>1045</spage><epage>1056</epage><pages>1045-1056</pages><issn>0022-3549</issn><issn>1520-6017</issn><eissn>1520-6017</eissn><coden>JPMSAE</coden><abstract>During infection, pathogens utilize surface receptors to gain entry into intracellular compartments. Multiple receptor–ligand interactions that lead to pathogen internalization have been identified and the importance of multivalent ligand binding as a means to facilitate internalization has emerged. The effect of ligand density, however, is less well known. In this study, ligand density was examined using poly(DL-lactic-co-glycolic acid) nanoparticles (PLGA NPs). A cyclic peptide, cLABL, was used as a targeting moiety, as it is a known ligand for intercellular cell adhesion molecule-1 (ICAM-1). To modulate the number of reactive sites on the surface of PLGA NPs, modified Pluronic® with carboxyl groups and Pluronic® with hydroxyl groups were combined in different ratios and the particle properties were examined. Utilizing a surfactant mixture directly affected the particle charge and the number of reactive sites for cLABL conjugation. The surface density of cLABL peptide increased as the relative amount of reactive Pluronic® was increased. Studies using carcinomic human alveolar basal epithelial cells (A549) showed that cLABL density might be optimized to improve cellular uptake. These results complement other studies, suggesting that surface density of the targeting moiety on the NP surface should be considered to enhance the effect of ligands used for cell targeting.</abstract><cop>Hoboken</cop><pub>Elsevier Inc</pub><pmid>20922813</pmid><doi>10.1002/jps.22342</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3549
ispartof Journal of pharmaceutical sciences, 2011-03, Vol.100 (3), p.1045-1056
issn 0022-3549
1520-6017
1520-6017
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4245447
source ScienceDirect®; Wiley Online Library (Online service)
subjects binding and cellular uptake
Biological and medical sciences
Cell Line, Tumor
cLABL
Drug Carriers
Drug Delivery Systems
General pharmacology
Humans
Intercellular Adhesion Molecule-1 - chemistry
Intercellular Adhesion Molecule-1 - metabolism
Lactic Acid
ligand density
Ligands
Medical sciences
Nanoparticles - chemistry
Particle Size
Peptides, Cyclic - chemistry
Peptides, Cyclic - metabolism
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Pluronic
Poloxamer - analogs & derivatives
Poloxamer - chemistry
poly(DL-lactic-co-glycolic acid) nanoparticles
Polyglycolic Acid
Polylactic Acid-Polyglycolic Acid Copolymer
Surface Properties
Surface-Active Agents
title Controlling Ligand Surface Density Optimizes Nanoparticle Binding to ICAM-1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A38%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Ligand%20Surface%20Density%20Optimizes%20Nanoparticle%20Binding%20to%20ICAM-1&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Fakhari,%20Amir&rft.date=2011-03&rft.volume=100&rft.issue=3&rft.spage=1045&rft.epage=1056&rft.pages=1045-1056&rft.issn=0022-3549&rft.eissn=1520-6017&rft.coden=JPMSAE&rft_id=info:doi/10.1002/jps.22342&rft_dat=%3Cproquest_pubme%3E3278507581%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6202-29bd72bea2c18d91ab76ded417b591cc0fcb427bd20dc63673a6b62f095ef26a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1517386884&rft_id=info:pmid/20922813&rfr_iscdi=true