Loading…
Mechanism of decreased vascular reactivity to angiotensin II in conscious, potassium-deficient rats
Chronic potassium deficiency in the rat results in a decrease in the pressor sensitivity to exogenous angiotensin II (AII). To define the mechanism of this resistance to AII, studies were performed in conscious rats after 14-21 d of dietary potassium deficiency. The pressor response to graded doses...
Saved in:
Published in: | The Journal of clinical investigation 1984, Vol.73 (1), p.79-86 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c398t-ede99f1ea9593a3b2ce221a0596f23aec40b3aa16aac162dd86152afeb718f753 |
---|---|
cites | |
container_end_page | 86 |
container_issue | 1 |
container_start_page | 79 |
container_title | The Journal of clinical investigation |
container_volume | 73 |
creator | PALLER, M. S DOUGLAS, J. G LINAS, S. L |
description | Chronic potassium deficiency in the rat results in a decrease in the pressor sensitivity to exogenous angiotensin II (AII). To define the mechanism of this resistance to AII, studies were performed in conscious rats after 14-21 d of dietary potassium deficiency. The pressor response to graded doses of AII was 50% less in potassium-deficient than control animals. In contrast, the pressor response to graded doses of norepinephrine was preserved in potassium-deficient rats; therefore, the decreased response to AII was not due to a generalized defect in vascular reactivity. Pretreatment with either the converting enzyme inhibitor, teprotide, or the prostaglandin synthesis inhibitor, indomethacin, failed to normalize the response to AII. Thus, neither prior receptor occupancy with endogenous AII nor the presence of vasodilatory prostaglandins caused the decreased AII response in potassium deficiency. Since the pressor response to AII involves angiotensin interaction with its vascular receptor, binding studies of mesenteric artery and uterine smooth muscle AII receptors were performed. Scatchard analysis showed that potassium deficiency resulted in a decrease in binding affinity (50% increase in Kd) in both uterine (6.00 vs. 3.82 nM; P less than 0.05) and vascular (1.39 vs. 0.973 nM; P less than 0.005) smooth muscle. Furthermore, despite increased circulating AII, there was an increase in AII receptor number in potassium-deficient uterine (308 vs. 147 fmol/mg protein; P less than 0.005) and vascular (470 vs. 316 fmol/mg protein; 0.05 less than P less than 0.1) smooth muscle. Although potassium deficiency resulted in alterations in receptor-binding parameters, the changes in binding affinity and number were directionally opposite, so that in potassium deficiency there was either no change or an increase in total AII binding. We conclude that the decrease in angiotensin pressor sensitivity in potassium-deficient rats is mediated by a postreceptor defect since it occurs subsequent to the binding of AII to its vascular smooth muscle receptor. |
doi_str_mv | 10.1172/JCI111209 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_424972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80929756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-ede99f1ea9593a3b2ce221a0596f23aec40b3aa16aac162dd86152afeb718f753</originalsourceid><addsrcrecordid>eNpVkU-LFDEQxYMo6-zqwQ8g5CCCYGv-dLqTgwcZXB1Z8aLnUJOu7Ea6kzFJD-y3N7LDoJcKxftVXiWPkBecveN8FO-_bnecc8HMI7LhSulOC6kfkw1jgndmlPopuSzlF2O871V_QS6GwbBe9xvivqG7gxjKQpOnE7qMUHCiRyhunSHT1rsajqHe05ooxNuQKsYSIt3taKsuxeJCWstbekgVSgnr0k3ogwsYK81QyzPyxMNc8PnpvCI_rz_92H7pbr5_3m0_3nROGl07nNAYzxGMMhLkXjgUggNTZvBCArqe7SUAHwAcH8Q06YErAR73I9d-VPKKfHi497DuF5xc888w20MOC-R7myDY_5UY7uxtOtpe9GYUbf71aT6n3yuWapdQHM4zRGwPtJoZYUY1NPDNA-hyKiWjP3twZv8GYs-BNPblv0udyVMCTX910tuPw-wzRBfKGTNKMiWY_ANCg5WV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80929756</pqid></control><display><type>article</type><title>Mechanism of decreased vascular reactivity to angiotensin II in conscious, potassium-deficient rats</title><source>Open Access: PubMed Central</source><source>EZB Electronic Journals Library</source><creator>PALLER, M. S ; DOUGLAS, J. G ; LINAS, S. L</creator><creatorcontrib>PALLER, M. S ; DOUGLAS, J. G ; LINAS, S. L</creatorcontrib><description>Chronic potassium deficiency in the rat results in a decrease in the pressor sensitivity to exogenous angiotensin II (AII). To define the mechanism of this resistance to AII, studies were performed in conscious rats after 14-21 d of dietary potassium deficiency. The pressor response to graded doses of AII was 50% less in potassium-deficient than control animals. In contrast, the pressor response to graded doses of norepinephrine was preserved in potassium-deficient rats; therefore, the decreased response to AII was not due to a generalized defect in vascular reactivity. Pretreatment with either the converting enzyme inhibitor, teprotide, or the prostaglandin synthesis inhibitor, indomethacin, failed to normalize the response to AII. Thus, neither prior receptor occupancy with endogenous AII nor the presence of vasodilatory prostaglandins caused the decreased AII response in potassium deficiency. Since the pressor response to AII involves angiotensin interaction with its vascular receptor, binding studies of mesenteric artery and uterine smooth muscle AII receptors were performed. Scatchard analysis showed that potassium deficiency resulted in a decrease in binding affinity (50% increase in Kd) in both uterine (6.00 vs. 3.82 nM; P less than 0.05) and vascular (1.39 vs. 0.973 nM; P less than 0.005) smooth muscle. Furthermore, despite increased circulating AII, there was an increase in AII receptor number in potassium-deficient uterine (308 vs. 147 fmol/mg protein; P less than 0.005) and vascular (470 vs. 316 fmol/mg protein; 0.05 less than P less than 0.1) smooth muscle. Although potassium deficiency resulted in alterations in receptor-binding parameters, the changes in binding affinity and number were directionally opposite, so that in potassium deficiency there was either no change or an increase in total AII binding. We conclude that the decrease in angiotensin pressor sensitivity in potassium-deficient rats is mediated by a postreceptor defect since it occurs subsequent to the binding of AII to its vascular smooth muscle receptor.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI111209</identifier><identifier>PMID: 6690484</identifier><identifier>CODEN: JCINAO</identifier><language>eng</language><publisher>Ann Arbor, MI: American Society for Clinical Investigation</publisher><subject>Angiotensin II - administration & dosage ; Angiotensin II - metabolism ; Angiotensin II - pharmacology ; Animals ; Biological and medical sciences ; Blood Pressure - drug effects ; Dose-Response Relationship, Drug ; Endocrine kidney. Renin-angiotensin-aldosterone system ; Female ; Fundamental and applied biological sciences. Psychology ; Male ; Muscle, Smooth, Vascular - metabolism ; Norepinephrine - administration & dosage ; Potassium - administration & dosage ; Potassium Deficiency - etiology ; Potassium Deficiency - metabolism ; Potassium Deficiency - physiopathology ; Pressoreceptors - drug effects ; Prostaglandins - physiology ; Rats ; Rats, Inbred Strains ; Receptors, Angiotensin - analysis ; Vertebrates: endocrinology</subject><ispartof>The Journal of clinical investigation, 1984, Vol.73 (1), p.79-86</ispartof><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-ede99f1ea9593a3b2ce221a0596f23aec40b3aa16aac162dd86152afeb718f753</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC424972/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC424972/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9530520$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6690484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>PALLER, M. S</creatorcontrib><creatorcontrib>DOUGLAS, J. G</creatorcontrib><creatorcontrib>LINAS, S. L</creatorcontrib><title>Mechanism of decreased vascular reactivity to angiotensin II in conscious, potassium-deficient rats</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Chronic potassium deficiency in the rat results in a decrease in the pressor sensitivity to exogenous angiotensin II (AII). To define the mechanism of this resistance to AII, studies were performed in conscious rats after 14-21 d of dietary potassium deficiency. The pressor response to graded doses of AII was 50% less in potassium-deficient than control animals. In contrast, the pressor response to graded doses of norepinephrine was preserved in potassium-deficient rats; therefore, the decreased response to AII was not due to a generalized defect in vascular reactivity. Pretreatment with either the converting enzyme inhibitor, teprotide, or the prostaglandin synthesis inhibitor, indomethacin, failed to normalize the response to AII. Thus, neither prior receptor occupancy with endogenous AII nor the presence of vasodilatory prostaglandins caused the decreased AII response in potassium deficiency. Since the pressor response to AII involves angiotensin interaction with its vascular receptor, binding studies of mesenteric artery and uterine smooth muscle AII receptors were performed. Scatchard analysis showed that potassium deficiency resulted in a decrease in binding affinity (50% increase in Kd) in both uterine (6.00 vs. 3.82 nM; P less than 0.05) and vascular (1.39 vs. 0.973 nM; P less than 0.005) smooth muscle. Furthermore, despite increased circulating AII, there was an increase in AII receptor number in potassium-deficient uterine (308 vs. 147 fmol/mg protein; P less than 0.005) and vascular (470 vs. 316 fmol/mg protein; 0.05 less than P less than 0.1) smooth muscle. Although potassium deficiency resulted in alterations in receptor-binding parameters, the changes in binding affinity and number were directionally opposite, so that in potassium deficiency there was either no change or an increase in total AII binding. We conclude that the decrease in angiotensin pressor sensitivity in potassium-deficient rats is mediated by a postreceptor defect since it occurs subsequent to the binding of AII to its vascular smooth muscle receptor.</description><subject>Angiotensin II - administration & dosage</subject><subject>Angiotensin II - metabolism</subject><subject>Angiotensin II - pharmacology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Blood Pressure - drug effects</subject><subject>Dose-Response Relationship, Drug</subject><subject>Endocrine kidney. Renin-angiotensin-aldosterone system</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Male</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Norepinephrine - administration & dosage</subject><subject>Potassium - administration & dosage</subject><subject>Potassium Deficiency - etiology</subject><subject>Potassium Deficiency - metabolism</subject><subject>Potassium Deficiency - physiopathology</subject><subject>Pressoreceptors - drug effects</subject><subject>Prostaglandins - physiology</subject><subject>Rats</subject><subject>Rats, Inbred Strains</subject><subject>Receptors, Angiotensin - analysis</subject><subject>Vertebrates: endocrinology</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNpVkU-LFDEQxYMo6-zqwQ8g5CCCYGv-dLqTgwcZXB1Z8aLnUJOu7Ea6kzFJD-y3N7LDoJcKxftVXiWPkBecveN8FO-_bnecc8HMI7LhSulOC6kfkw1jgndmlPopuSzlF2O871V_QS6GwbBe9xvivqG7gxjKQpOnE7qMUHCiRyhunSHT1rsajqHe05ooxNuQKsYSIt3taKsuxeJCWstbekgVSgnr0k3ogwsYK81QyzPyxMNc8PnpvCI_rz_92H7pbr5_3m0_3nROGl07nNAYzxGMMhLkXjgUggNTZvBCArqe7SUAHwAcH8Q06YErAR73I9d-VPKKfHi497DuF5xc888w20MOC-R7myDY_5UY7uxtOtpe9GYUbf71aT6n3yuWapdQHM4zRGwPtJoZYUY1NPDNA-hyKiWjP3twZv8GYs-BNPblv0udyVMCTX910tuPw-wzRBfKGTNKMiWY_ANCg5WV</recordid><startdate>1984</startdate><enddate>1984</enddate><creator>PALLER, M. S</creator><creator>DOUGLAS, J. G</creator><creator>LINAS, S. L</creator><general>American Society for Clinical Investigation</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>1984</creationdate><title>Mechanism of decreased vascular reactivity to angiotensin II in conscious, potassium-deficient rats</title><author>PALLER, M. S ; DOUGLAS, J. G ; LINAS, S. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-ede99f1ea9593a3b2ce221a0596f23aec40b3aa16aac162dd86152afeb718f753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Angiotensin II - administration & dosage</topic><topic>Angiotensin II - metabolism</topic><topic>Angiotensin II - pharmacology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Blood Pressure - drug effects</topic><topic>Dose-Response Relationship, Drug</topic><topic>Endocrine kidney. Renin-angiotensin-aldosterone system</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Male</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Norepinephrine - administration & dosage</topic><topic>Potassium - administration & dosage</topic><topic>Potassium Deficiency - etiology</topic><topic>Potassium Deficiency - metabolism</topic><topic>Potassium Deficiency - physiopathology</topic><topic>Pressoreceptors - drug effects</topic><topic>Prostaglandins - physiology</topic><topic>Rats</topic><topic>Rats, Inbred Strains</topic><topic>Receptors, Angiotensin - analysis</topic><topic>Vertebrates: endocrinology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PALLER, M. S</creatorcontrib><creatorcontrib>DOUGLAS, J. G</creatorcontrib><creatorcontrib>LINAS, S. L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PALLER, M. S</au><au>DOUGLAS, J. G</au><au>LINAS, S. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of decreased vascular reactivity to angiotensin II in conscious, potassium-deficient rats</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>1984</date><risdate>1984</risdate><volume>73</volume><issue>1</issue><spage>79</spage><epage>86</epage><pages>79-86</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><coden>JCINAO</coden><abstract>Chronic potassium deficiency in the rat results in a decrease in the pressor sensitivity to exogenous angiotensin II (AII). To define the mechanism of this resistance to AII, studies were performed in conscious rats after 14-21 d of dietary potassium deficiency. The pressor response to graded doses of AII was 50% less in potassium-deficient than control animals. In contrast, the pressor response to graded doses of norepinephrine was preserved in potassium-deficient rats; therefore, the decreased response to AII was not due to a generalized defect in vascular reactivity. Pretreatment with either the converting enzyme inhibitor, teprotide, or the prostaglandin synthesis inhibitor, indomethacin, failed to normalize the response to AII. Thus, neither prior receptor occupancy with endogenous AII nor the presence of vasodilatory prostaglandins caused the decreased AII response in potassium deficiency. Since the pressor response to AII involves angiotensin interaction with its vascular receptor, binding studies of mesenteric artery and uterine smooth muscle AII receptors were performed. Scatchard analysis showed that potassium deficiency resulted in a decrease in binding affinity (50% increase in Kd) in both uterine (6.00 vs. 3.82 nM; P less than 0.05) and vascular (1.39 vs. 0.973 nM; P less than 0.005) smooth muscle. Furthermore, despite increased circulating AII, there was an increase in AII receptor number in potassium-deficient uterine (308 vs. 147 fmol/mg protein; P less than 0.005) and vascular (470 vs. 316 fmol/mg protein; 0.05 less than P less than 0.1) smooth muscle. Although potassium deficiency resulted in alterations in receptor-binding parameters, the changes in binding affinity and number were directionally opposite, so that in potassium deficiency there was either no change or an increase in total AII binding. We conclude that the decrease in angiotensin pressor sensitivity in potassium-deficient rats is mediated by a postreceptor defect since it occurs subsequent to the binding of AII to its vascular smooth muscle receptor.</abstract><cop>Ann Arbor, MI</cop><pub>American Society for Clinical Investigation</pub><pmid>6690484</pmid><doi>10.1172/JCI111209</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9738 |
ispartof | The Journal of clinical investigation, 1984, Vol.73 (1), p.79-86 |
issn | 0021-9738 1558-8238 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_424972 |
source | Open Access: PubMed Central; EZB Electronic Journals Library |
subjects | Angiotensin II - administration & dosage Angiotensin II - metabolism Angiotensin II - pharmacology Animals Biological and medical sciences Blood Pressure - drug effects Dose-Response Relationship, Drug Endocrine kidney. Renin-angiotensin-aldosterone system Female Fundamental and applied biological sciences. Psychology Male Muscle, Smooth, Vascular - metabolism Norepinephrine - administration & dosage Potassium - administration & dosage Potassium Deficiency - etiology Potassium Deficiency - metabolism Potassium Deficiency - physiopathology Pressoreceptors - drug effects Prostaglandins - physiology Rats Rats, Inbred Strains Receptors, Angiotensin - analysis Vertebrates: endocrinology |
title | Mechanism of decreased vascular reactivity to angiotensin II in conscious, potassium-deficient rats |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20decreased%20vascular%20reactivity%20to%20angiotensin%20II%20in%20conscious,%20potassium-deficient%20rats&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=PALLER,%20M.%20S&rft.date=1984&rft.volume=73&rft.issue=1&rft.spage=79&rft.epage=86&rft.pages=79-86&rft.issn=0021-9738&rft.eissn=1558-8238&rft.coden=JCINAO&rft_id=info:doi/10.1172/JCI111209&rft_dat=%3Cproquest_pubme%3E80929756%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-ede99f1ea9593a3b2ce221a0596f23aec40b3aa16aac162dd86152afeb718f753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=80929756&rft_id=info:pmid/6690484&rfr_iscdi=true |