Loading…

Mismatch repair causes the dynamic release of an essential DNA polymerase from the replication fork

Summary Mismatch repair (MMR) corrects DNA polymerase errors occurring during genome replication. MMR is critical for genome maintenance, and its loss increases mutation rates several hundred fold. Recent work has shown that the interaction between the mismatch recognition protein MutS and the repli...

Full description

Saved in:
Bibliographic Details
Published in:Molecular microbiology 2011-11, Vol.82 (3), p.648-663
Main Authors: Klocko, Andrew D., Schroeder, Jeremy W., Walsh, Brian W., Lenhart, Justin S., Evans, Margery L., Simmons, Lyle A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary Mismatch repair (MMR) corrects DNA polymerase errors occurring during genome replication. MMR is critical for genome maintenance, and its loss increases mutation rates several hundred fold. Recent work has shown that the interaction between the mismatch recognition protein MutS and the replication processivity clamp is important for MMR in Bacillus subtilis. To further understand how MMR is coupled to DNA replication, we examined the subcellular localization of MMR and DNA replication proteins fused to green fluorescent protein (GFP) in live cells, following an increase in DNA replication errors. We demonstrate that foci of the essential DNA polymerase DnaE–GFP decrease following mismatch incorporation and that loss of DnaE–GFP foci requires MutS. Furthermore, we show that MutS and MutL bind DnaE in vitro, suggesting that DnaE is coupled to repair. We also found that DnaE–GFP foci decrease in vivo following a DNA damage‐independent arrest of DNA synthesis showing that loss of DnaE–GFP foci is caused by perturbations to DNA replication. We propose that MutS directly contacts the DNA replication machinery, causing a dynamic change in the organization of DnaE at the replication fork during MMR. Our results establish a striking and intimate connection between MMR and the replicating DNA polymerase complex in vivo.
ISSN:0950-382X
1365-2958
DOI:10.1111/j.1365-2958.2011.07841.x