Loading…
Effects of high NH(+) 4 on K(+) uptake, culm mechanical strength and grain filling in wheat
It is well established that a high external NH(+) 4 concentration depresses many processes in plant development, but the underlying mechanisms are still not well understood. To determine whether the negative effects of high levels of NH(+) 4 are related to competitive cation uptake, wheat was grown...
Saved in:
Published in: | Frontiers in plant science 2014-12, Vol.5, p.703-703 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is well established that a high external NH(+) 4 concentration depresses many processes in plant development, but the underlying mechanisms are still not well understood. To determine whether the negative effects of high levels of NH(+) 4 are related to competitive cation uptake, wheat was grown in a field with moderate (18 g N m(-2)) and high (30 g N m(-2)) supplies of NH(+) 4 in the presence or absence of additional K(+) (6 g K2O m(-2)) to examine culm mechanical strength, the main components of the vascular bundle, nitrogen (N) remobilization and the grain-filling rate. The results indicated that an excessive supply of NH(+) 4 significantly decreased culm mechanical strength, the cellulose and lignin contents of vascular bundles, the N remobilization efficiency (NRE) and the grain-filling rate compared with a moderate level of NH(+) 4. The additional provision of K(+) considerably alleviated these negative effects of high NH(+) 4, resulting in a 19.41-26.95% increase in culm mechanical strength during grain filling and a 34.59% increase in the NRE. An assay using the scanning ion-selective electrode technique (SIET) showed that the net rate of transmembrane K(+) influx decreased by 84.62%, and measurements using flame photometry demonstrated that the K(+) content decreased by 36.13% in wheat plants subjected to high NH(+) 4. This study indicates that the effects of high NH(+) 4 on culm mechanical strength, cellulose and lignin contents, the NRE and the grain-filling rate are probably associated with inhibition of K(+) uptake in wheat. |
---|---|
ISSN: | 1664-462X 1664-462X |
DOI: | 10.3389/fpls.2014.00703 |