Loading…

Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm

Abstract Regression models have been widely studied to investigate the prediction power of neuroimaging measures as biomarkers for inferring cognitive outcomes in the Alzheimer's disease study. Most of these models ignore the interrelated structures either within neuroimaging measures or betwee...

Full description

Saved in:
Bibliographic Details
Published in:Neurobiology of aging 2015-01, Vol.36, p.S185-S193
Main Authors: Yan, Jingwen, Li, Taiyong, Wang, Hua, Huang, Heng, Wan, Jing, Nho, Kwangsik, Kim, Sungeun, Risacher, Shannon L, Saykin, Andrew J, Shen, Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c550t-1bf70b8e493ade1048c515d0c8e0d082390563364ab359afe45976149f0b238e3
cites cdi_FETCH-LOGICAL-c550t-1bf70b8e493ade1048c515d0c8e0d082390563364ab359afe45976149f0b238e3
container_end_page S193
container_issue
container_start_page S185
container_title Neurobiology of aging
container_volume 36
creator Yan, Jingwen
Li, Taiyong
Wang, Hua
Huang, Heng
Wan, Jing
Nho, Kwangsik
Kim, Sungeun
Risacher, Shannon L
Saykin, Andrew J
Shen, Li
description Abstract Regression models have been widely studied to investigate the prediction power of neuroimaging measures as biomarkers for inferring cognitive outcomes in the Alzheimer's disease study. Most of these models ignore the interrelated structures either within neuroimaging measures or between cognitive outcomes, and thus may have limited power to yield optimal solutions. To address this issue, we propose to use a new sparse multitask learning model called Group-Sparse Multi-task Regression and Feature Selection (G-SMuRFS) and demonstrate its effectiveness by examining the predictive power of detailed cortical thickness measures toward 3 types of cognitive scores in a large cohort. G-SMuRFS proposes a group-level l2,1 -norm strategy to group relevant features together in an anatomically meaningful manner and use this prior knowledge to guide the learning process. This approach also takes into account the correlation among cognitive outcomes for building a more appropriate predictive model. Compared with traditional methods, G-SMuRFS not only demonstrates a superior performance but also identifies a small set of surface markers that are biologically meaningful.
doi_str_mv 10.1016/j.neurobiolaging.2014.07.045
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4268071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0197458014005466</els_id><sourcerecordid>1639489052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-1bf70b8e493ade1048c515d0c8e0d082390563364ab359afe45976149f0b238e3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi1ERbeFv4By4MCBpOPEzoeEKqEVbZEqcSicR44zCd4m9mInK_Xf42hL1XLiNId5552PZxj7wCHjwMuLXWZp8a41blSDsUOWAxcZVBkI-YptuJR1ykVTvWYb4E2VClnDKTsLYQcAlajKN-w0l0II2TQbdrd1fjZajUlYfK80JdF4Uv6efEh655O9p87oOTZKtBusmc2BErfM2k0UkiWsicG7ZZ-M-SeeWOent-ykV2Ogd4_xnP28-vpje5Pefr_-tv1ym2opYU5521fQ1iSaQnXEQdRactmBrgk6qPOiAVkWRSlUW8hG9RQnrsq4Wg9tXtRUnLPLo-9-aSfqNNnZqxH33sQFHtApgy8z1vzCwR1Q5GUNFY8GHx8NvPu9UJhxMkHTOCpLbgnIy6IRdRwjj9LPR6n2LgRP_VMbDrhywR2-5IIrF4QKI5dY_v75qE_Ff0FEwdVRQPFgB0MegzZkdTy-Jz1j58z_drr8x0iPxq6E7-mBws4t3kYoyDHkCHi3_sj6IlwASFGWxR8gL735</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639489052</pqid></control><display><type>article</type><title>Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm</title><source>ScienceDirect Freedom Collection</source><creator>Yan, Jingwen ; Li, Taiyong ; Wang, Hua ; Huang, Heng ; Wan, Jing ; Nho, Kwangsik ; Kim, Sungeun ; Risacher, Shannon L ; Saykin, Andrew J ; Shen, Li</creator><creatorcontrib>Yan, Jingwen ; Li, Taiyong ; Wang, Hua ; Huang, Heng ; Wan, Jing ; Nho, Kwangsik ; Kim, Sungeun ; Risacher, Shannon L ; Saykin, Andrew J ; Shen, Li ; Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><description>Abstract Regression models have been widely studied to investigate the prediction power of neuroimaging measures as biomarkers for inferring cognitive outcomes in the Alzheimer's disease study. Most of these models ignore the interrelated structures either within neuroimaging measures or between cognitive outcomes, and thus may have limited power to yield optimal solutions. To address this issue, we propose to use a new sparse multitask learning model called Group-Sparse Multi-task Regression and Feature Selection (G-SMuRFS) and demonstrate its effectiveness by examining the predictive power of detailed cortical thickness measures toward 3 types of cognitive scores in a large cohort. G-SMuRFS proposes a group-level l2,1 -norm strategy to group relevant features together in an anatomically meaningful manner and use this prior knowledge to guide the learning process. This approach also takes into account the correlation among cognitive outcomes for building a more appropriate predictive model. Compared with traditional methods, G-SMuRFS not only demonstrates a superior performance but also identifies a small set of surface markers that are biologically meaningful.</description><identifier>ISSN: 0197-4580</identifier><identifier>ISSN: 1558-1497</identifier><identifier>EISSN: 1558-1497</identifier><identifier>DOI: 10.1016/j.neurobiolaging.2014.07.045</identifier><identifier>PMID: 25444599</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alzheimer Disease - diagnosis ; Alzheimer Disease - pathology ; Alzheimer Disease - psychology ; Alzheimer's disease neuroimaging initiative (ADNI) ; Biomarkers - metabolism ; Cerebral Cortex - pathology ; Cognition ; Cognitive function prediction ; Cohort Studies ; Cortical thickness ; Diagnostic Techniques, Neurological ; Forecasting ; Humans ; Internal Medicine ; Learning ; Magnetic resonance imaging (MRI) ; Neuroimaging ; Neurology ; Regression Analysis ; Sparse learning</subject><ispartof>Neurobiology of aging, 2015-01, Vol.36, p.S185-S193</ispartof><rights>Elsevier Inc.</rights><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><rights>2014 Elsevier Inc. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-1bf70b8e493ade1048c515d0c8e0d082390563364ab359afe45976149f0b238e3</citedby><cites>FETCH-LOGICAL-c550t-1bf70b8e493ade1048c515d0c8e0d082390563364ab359afe45976149f0b238e3</cites><orcidid>0000-0002-1376-8532 ; 0000-0002-1546-8015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25444599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Jingwen</creatorcontrib><creatorcontrib>Li, Taiyong</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Huang, Heng</creatorcontrib><creatorcontrib>Wan, Jing</creatorcontrib><creatorcontrib>Nho, Kwangsik</creatorcontrib><creatorcontrib>Kim, Sungeun</creatorcontrib><creatorcontrib>Risacher, Shannon L</creatorcontrib><creatorcontrib>Saykin, Andrew J</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><title>Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm</title><title>Neurobiology of aging</title><addtitle>Neurobiol Aging</addtitle><description>Abstract Regression models have been widely studied to investigate the prediction power of neuroimaging measures as biomarkers for inferring cognitive outcomes in the Alzheimer's disease study. Most of these models ignore the interrelated structures either within neuroimaging measures or between cognitive outcomes, and thus may have limited power to yield optimal solutions. To address this issue, we propose to use a new sparse multitask learning model called Group-Sparse Multi-task Regression and Feature Selection (G-SMuRFS) and demonstrate its effectiveness by examining the predictive power of detailed cortical thickness measures toward 3 types of cognitive scores in a large cohort. G-SMuRFS proposes a group-level l2,1 -norm strategy to group relevant features together in an anatomically meaningful manner and use this prior knowledge to guide the learning process. This approach also takes into account the correlation among cognitive outcomes for building a more appropriate predictive model. Compared with traditional methods, G-SMuRFS not only demonstrates a superior performance but also identifies a small set of surface markers that are biologically meaningful.</description><subject>Alzheimer Disease - diagnosis</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer Disease - psychology</subject><subject>Alzheimer's disease neuroimaging initiative (ADNI)</subject><subject>Biomarkers - metabolism</subject><subject>Cerebral Cortex - pathology</subject><subject>Cognition</subject><subject>Cognitive function prediction</subject><subject>Cohort Studies</subject><subject>Cortical thickness</subject><subject>Diagnostic Techniques, Neurological</subject><subject>Forecasting</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Learning</subject><subject>Magnetic resonance imaging (MRI)</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Regression Analysis</subject><subject>Sparse learning</subject><issn>0197-4580</issn><issn>1558-1497</issn><issn>1558-1497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkk1v1DAQhi1ERbeFv4By4MCBpOPEzoeEKqEVbZEqcSicR44zCd4m9mInK_Xf42hL1XLiNId5552PZxj7wCHjwMuLXWZp8a41blSDsUOWAxcZVBkI-YptuJR1ykVTvWYb4E2VClnDKTsLYQcAlajKN-w0l0II2TQbdrd1fjZajUlYfK80JdF4Uv6efEh655O9p87oOTZKtBusmc2BErfM2k0UkiWsicG7ZZ-M-SeeWOent-ykV2Ogd4_xnP28-vpje5Pefr_-tv1ym2opYU5521fQ1iSaQnXEQdRactmBrgk6qPOiAVkWRSlUW8hG9RQnrsq4Wg9tXtRUnLPLo-9-aSfqNNnZqxH33sQFHtApgy8z1vzCwR1Q5GUNFY8GHx8NvPu9UJhxMkHTOCpLbgnIy6IRdRwjj9LPR6n2LgRP_VMbDrhywR2-5IIrF4QKI5dY_v75qE_Ff0FEwdVRQPFgB0MegzZkdTy-Jz1j58z_drr8x0iPxq6E7-mBws4t3kYoyDHkCHi3_sj6IlwASFGWxR8gL735</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Yan, Jingwen</creator><creator>Li, Taiyong</creator><creator>Wang, Hua</creator><creator>Huang, Heng</creator><creator>Wan, Jing</creator><creator>Nho, Kwangsik</creator><creator>Kim, Sungeun</creator><creator>Risacher, Shannon L</creator><creator>Saykin, Andrew J</creator><creator>Shen, Li</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1376-8532</orcidid><orcidid>https://orcid.org/0000-0002-1546-8015</orcidid></search><sort><creationdate>20150101</creationdate><title>Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm</title><author>Yan, Jingwen ; Li, Taiyong ; Wang, Hua ; Huang, Heng ; Wan, Jing ; Nho, Kwangsik ; Kim, Sungeun ; Risacher, Shannon L ; Saykin, Andrew J ; Shen, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-1bf70b8e493ade1048c515d0c8e0d082390563364ab359afe45976149f0b238e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alzheimer Disease - diagnosis</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer Disease - psychology</topic><topic>Alzheimer's disease neuroimaging initiative (ADNI)</topic><topic>Biomarkers - metabolism</topic><topic>Cerebral Cortex - pathology</topic><topic>Cognition</topic><topic>Cognitive function prediction</topic><topic>Cohort Studies</topic><topic>Cortical thickness</topic><topic>Diagnostic Techniques, Neurological</topic><topic>Forecasting</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Learning</topic><topic>Magnetic resonance imaging (MRI)</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Regression Analysis</topic><topic>Sparse learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Jingwen</creatorcontrib><creatorcontrib>Li, Taiyong</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Huang, Heng</creatorcontrib><creatorcontrib>Wan, Jing</creatorcontrib><creatorcontrib>Nho, Kwangsik</creatorcontrib><creatorcontrib>Kim, Sungeun</creatorcontrib><creatorcontrib>Risacher, Shannon L</creatorcontrib><creatorcontrib>Saykin, Andrew J</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurobiology of aging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Jingwen</au><au>Li, Taiyong</au><au>Wang, Hua</au><au>Huang, Heng</au><au>Wan, Jing</au><au>Nho, Kwangsik</au><au>Kim, Sungeun</au><au>Risacher, Shannon L</au><au>Saykin, Andrew J</au><au>Shen, Li</au><aucorp>Alzheimer's Disease Neuroimaging Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm</atitle><jtitle>Neurobiology of aging</jtitle><addtitle>Neurobiol Aging</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>36</volume><spage>S185</spage><epage>S193</epage><pages>S185-S193</pages><issn>0197-4580</issn><issn>1558-1497</issn><eissn>1558-1497</eissn><abstract>Abstract Regression models have been widely studied to investigate the prediction power of neuroimaging measures as biomarkers for inferring cognitive outcomes in the Alzheimer's disease study. Most of these models ignore the interrelated structures either within neuroimaging measures or between cognitive outcomes, and thus may have limited power to yield optimal solutions. To address this issue, we propose to use a new sparse multitask learning model called Group-Sparse Multi-task Regression and Feature Selection (G-SMuRFS) and demonstrate its effectiveness by examining the predictive power of detailed cortical thickness measures toward 3 types of cognitive scores in a large cohort. G-SMuRFS proposes a group-level l2,1 -norm strategy to group relevant features together in an anatomically meaningful manner and use this prior knowledge to guide the learning process. This approach also takes into account the correlation among cognitive outcomes for building a more appropriate predictive model. Compared with traditional methods, G-SMuRFS not only demonstrates a superior performance but also identifies a small set of surface markers that are biologically meaningful.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25444599</pmid><doi>10.1016/j.neurobiolaging.2014.07.045</doi><orcidid>https://orcid.org/0000-0002-1376-8532</orcidid><orcidid>https://orcid.org/0000-0002-1546-8015</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0197-4580
ispartof Neurobiology of aging, 2015-01, Vol.36, p.S185-S193
issn 0197-4580
1558-1497
1558-1497
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4268071
source ScienceDirect Freedom Collection
subjects Alzheimer Disease - diagnosis
Alzheimer Disease - pathology
Alzheimer Disease - psychology
Alzheimer's disease neuroimaging initiative (ADNI)
Biomarkers - metabolism
Cerebral Cortex - pathology
Cognition
Cognitive function prediction
Cohort Studies
Cortical thickness
Diagnostic Techniques, Neurological
Forecasting
Humans
Internal Medicine
Learning
Magnetic resonance imaging (MRI)
Neuroimaging
Neurology
Regression Analysis
Sparse learning
title Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20surface%20biomarkers%20for%20predicting%20cognitive%20outcomes%20using%20group%20l2,1%20norm&rft.jtitle=Neurobiology%20of%20aging&rft.au=Yan,%20Jingwen&rft.aucorp=Alzheimer's%20Disease%20Neuroimaging%20Initiative&rft.date=2015-01-01&rft.volume=36&rft.spage=S185&rft.epage=S193&rft.pages=S185-S193&rft.issn=0197-4580&rft.eissn=1558-1497&rft_id=info:doi/10.1016/j.neurobiolaging.2014.07.045&rft_dat=%3Cproquest_pubme%3E1639489052%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c550t-1bf70b8e493ade1048c515d0c8e0d082390563364ab359afe45976149f0b238e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1639489052&rft_id=info:pmid/25444599&rfr_iscdi=true