Loading…
Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm
Abstract Regression models have been widely studied to investigate the prediction power of neuroimaging measures as biomarkers for inferring cognitive outcomes in the Alzheimer's disease study. Most of these models ignore the interrelated structures either within neuroimaging measures or betwee...
Saved in:
Published in: | Neurobiology of aging 2015-01, Vol.36, p.S185-S193 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c550t-1bf70b8e493ade1048c515d0c8e0d082390563364ab359afe45976149f0b238e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c550t-1bf70b8e493ade1048c515d0c8e0d082390563364ab359afe45976149f0b238e3 |
container_end_page | S193 |
container_issue | |
container_start_page | S185 |
container_title | Neurobiology of aging |
container_volume | 36 |
creator | Yan, Jingwen Li, Taiyong Wang, Hua Huang, Heng Wan, Jing Nho, Kwangsik Kim, Sungeun Risacher, Shannon L Saykin, Andrew J Shen, Li |
description | Abstract Regression models have been widely studied to investigate the prediction power of neuroimaging measures as biomarkers for inferring cognitive outcomes in the Alzheimer's disease study. Most of these models ignore the interrelated structures either within neuroimaging measures or between cognitive outcomes, and thus may have limited power to yield optimal solutions. To address this issue, we propose to use a new sparse multitask learning model called Group-Sparse Multi-task Regression and Feature Selection (G-SMuRFS) and demonstrate its effectiveness by examining the predictive power of detailed cortical thickness measures toward 3 types of cognitive scores in a large cohort. G-SMuRFS proposes a group-level l2,1 -norm strategy to group relevant features together in an anatomically meaningful manner and use this prior knowledge to guide the learning process. This approach also takes into account the correlation among cognitive outcomes for building a more appropriate predictive model. Compared with traditional methods, G-SMuRFS not only demonstrates a superior performance but also identifies a small set of surface markers that are biologically meaningful. |
doi_str_mv | 10.1016/j.neurobiolaging.2014.07.045 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4268071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0197458014005466</els_id><sourcerecordid>1639489052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-1bf70b8e493ade1048c515d0c8e0d082390563364ab359afe45976149f0b238e3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi1ERbeFv4By4MCBpOPEzoeEKqEVbZEqcSicR44zCd4m9mInK_Xf42hL1XLiNId5552PZxj7wCHjwMuLXWZp8a41blSDsUOWAxcZVBkI-YptuJR1ykVTvWYb4E2VClnDKTsLYQcAlajKN-w0l0II2TQbdrd1fjZajUlYfK80JdF4Uv6efEh655O9p87oOTZKtBusmc2BErfM2k0UkiWsicG7ZZ-M-SeeWOent-ykV2Ogd4_xnP28-vpje5Pefr_-tv1ym2opYU5521fQ1iSaQnXEQdRactmBrgk6qPOiAVkWRSlUW8hG9RQnrsq4Wg9tXtRUnLPLo-9-aSfqNNnZqxH33sQFHtApgy8z1vzCwR1Q5GUNFY8GHx8NvPu9UJhxMkHTOCpLbgnIy6IRdRwjj9LPR6n2LgRP_VMbDrhywR2-5IIrF4QKI5dY_v75qE_Ff0FEwdVRQPFgB0MegzZkdTy-Jz1j58z_drr8x0iPxq6E7-mBws4t3kYoyDHkCHi3_sj6IlwASFGWxR8gL735</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639489052</pqid></control><display><type>article</type><title>Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm</title><source>ScienceDirect Freedom Collection</source><creator>Yan, Jingwen ; Li, Taiyong ; Wang, Hua ; Huang, Heng ; Wan, Jing ; Nho, Kwangsik ; Kim, Sungeun ; Risacher, Shannon L ; Saykin, Andrew J ; Shen, Li</creator><creatorcontrib>Yan, Jingwen ; Li, Taiyong ; Wang, Hua ; Huang, Heng ; Wan, Jing ; Nho, Kwangsik ; Kim, Sungeun ; Risacher, Shannon L ; Saykin, Andrew J ; Shen, Li ; Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><description>Abstract Regression models have been widely studied to investigate the prediction power of neuroimaging measures as biomarkers for inferring cognitive outcomes in the Alzheimer's disease study. Most of these models ignore the interrelated structures either within neuroimaging measures or between cognitive outcomes, and thus may have limited power to yield optimal solutions. To address this issue, we propose to use a new sparse multitask learning model called Group-Sparse Multi-task Regression and Feature Selection (G-SMuRFS) and demonstrate its effectiveness by examining the predictive power of detailed cortical thickness measures toward 3 types of cognitive scores in a large cohort. G-SMuRFS proposes a group-level l2,1 -norm strategy to group relevant features together in an anatomically meaningful manner and use this prior knowledge to guide the learning process. This approach also takes into account the correlation among cognitive outcomes for building a more appropriate predictive model. Compared with traditional methods, G-SMuRFS not only demonstrates a superior performance but also identifies a small set of surface markers that are biologically meaningful.</description><identifier>ISSN: 0197-4580</identifier><identifier>ISSN: 1558-1497</identifier><identifier>EISSN: 1558-1497</identifier><identifier>DOI: 10.1016/j.neurobiolaging.2014.07.045</identifier><identifier>PMID: 25444599</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alzheimer Disease - diagnosis ; Alzheimer Disease - pathology ; Alzheimer Disease - psychology ; Alzheimer's disease neuroimaging initiative (ADNI) ; Biomarkers - metabolism ; Cerebral Cortex - pathology ; Cognition ; Cognitive function prediction ; Cohort Studies ; Cortical thickness ; Diagnostic Techniques, Neurological ; Forecasting ; Humans ; Internal Medicine ; Learning ; Magnetic resonance imaging (MRI) ; Neuroimaging ; Neurology ; Regression Analysis ; Sparse learning</subject><ispartof>Neurobiology of aging, 2015-01, Vol.36, p.S185-S193</ispartof><rights>Elsevier Inc.</rights><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><rights>2014 Elsevier Inc. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-1bf70b8e493ade1048c515d0c8e0d082390563364ab359afe45976149f0b238e3</citedby><cites>FETCH-LOGICAL-c550t-1bf70b8e493ade1048c515d0c8e0d082390563364ab359afe45976149f0b238e3</cites><orcidid>0000-0002-1376-8532 ; 0000-0002-1546-8015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25444599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Jingwen</creatorcontrib><creatorcontrib>Li, Taiyong</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Huang, Heng</creatorcontrib><creatorcontrib>Wan, Jing</creatorcontrib><creatorcontrib>Nho, Kwangsik</creatorcontrib><creatorcontrib>Kim, Sungeun</creatorcontrib><creatorcontrib>Risacher, Shannon L</creatorcontrib><creatorcontrib>Saykin, Andrew J</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><title>Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm</title><title>Neurobiology of aging</title><addtitle>Neurobiol Aging</addtitle><description>Abstract Regression models have been widely studied to investigate the prediction power of neuroimaging measures as biomarkers for inferring cognitive outcomes in the Alzheimer's disease study. Most of these models ignore the interrelated structures either within neuroimaging measures or between cognitive outcomes, and thus may have limited power to yield optimal solutions. To address this issue, we propose to use a new sparse multitask learning model called Group-Sparse Multi-task Regression and Feature Selection (G-SMuRFS) and demonstrate its effectiveness by examining the predictive power of detailed cortical thickness measures toward 3 types of cognitive scores in a large cohort. G-SMuRFS proposes a group-level l2,1 -norm strategy to group relevant features together in an anatomically meaningful manner and use this prior knowledge to guide the learning process. This approach also takes into account the correlation among cognitive outcomes for building a more appropriate predictive model. Compared with traditional methods, G-SMuRFS not only demonstrates a superior performance but also identifies a small set of surface markers that are biologically meaningful.</description><subject>Alzheimer Disease - diagnosis</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer Disease - psychology</subject><subject>Alzheimer's disease neuroimaging initiative (ADNI)</subject><subject>Biomarkers - metabolism</subject><subject>Cerebral Cortex - pathology</subject><subject>Cognition</subject><subject>Cognitive function prediction</subject><subject>Cohort Studies</subject><subject>Cortical thickness</subject><subject>Diagnostic Techniques, Neurological</subject><subject>Forecasting</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Learning</subject><subject>Magnetic resonance imaging (MRI)</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Regression Analysis</subject><subject>Sparse learning</subject><issn>0197-4580</issn><issn>1558-1497</issn><issn>1558-1497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkk1v1DAQhi1ERbeFv4By4MCBpOPEzoeEKqEVbZEqcSicR44zCd4m9mInK_Xf42hL1XLiNId5552PZxj7wCHjwMuLXWZp8a41blSDsUOWAxcZVBkI-YptuJR1ykVTvWYb4E2VClnDKTsLYQcAlajKN-w0l0II2TQbdrd1fjZajUlYfK80JdF4Uv6efEh655O9p87oOTZKtBusmc2BErfM2k0UkiWsicG7ZZ-M-SeeWOent-ykV2Ogd4_xnP28-vpje5Pefr_-tv1ym2opYU5521fQ1iSaQnXEQdRactmBrgk6qPOiAVkWRSlUW8hG9RQnrsq4Wg9tXtRUnLPLo-9-aSfqNNnZqxH33sQFHtApgy8z1vzCwR1Q5GUNFY8GHx8NvPu9UJhxMkHTOCpLbgnIy6IRdRwjj9LPR6n2LgRP_VMbDrhywR2-5IIrF4QKI5dY_v75qE_Ff0FEwdVRQPFgB0MegzZkdTy-Jz1j58z_drr8x0iPxq6E7-mBws4t3kYoyDHkCHi3_sj6IlwASFGWxR8gL735</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Yan, Jingwen</creator><creator>Li, Taiyong</creator><creator>Wang, Hua</creator><creator>Huang, Heng</creator><creator>Wan, Jing</creator><creator>Nho, Kwangsik</creator><creator>Kim, Sungeun</creator><creator>Risacher, Shannon L</creator><creator>Saykin, Andrew J</creator><creator>Shen, Li</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1376-8532</orcidid><orcidid>https://orcid.org/0000-0002-1546-8015</orcidid></search><sort><creationdate>20150101</creationdate><title>Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm</title><author>Yan, Jingwen ; Li, Taiyong ; Wang, Hua ; Huang, Heng ; Wan, Jing ; Nho, Kwangsik ; Kim, Sungeun ; Risacher, Shannon L ; Saykin, Andrew J ; Shen, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-1bf70b8e493ade1048c515d0c8e0d082390563364ab359afe45976149f0b238e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alzheimer Disease - diagnosis</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer Disease - psychology</topic><topic>Alzheimer's disease neuroimaging initiative (ADNI)</topic><topic>Biomarkers - metabolism</topic><topic>Cerebral Cortex - pathology</topic><topic>Cognition</topic><topic>Cognitive function prediction</topic><topic>Cohort Studies</topic><topic>Cortical thickness</topic><topic>Diagnostic Techniques, Neurological</topic><topic>Forecasting</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Learning</topic><topic>Magnetic resonance imaging (MRI)</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Regression Analysis</topic><topic>Sparse learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Jingwen</creatorcontrib><creatorcontrib>Li, Taiyong</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Huang, Heng</creatorcontrib><creatorcontrib>Wan, Jing</creatorcontrib><creatorcontrib>Nho, Kwangsik</creatorcontrib><creatorcontrib>Kim, Sungeun</creatorcontrib><creatorcontrib>Risacher, Shannon L</creatorcontrib><creatorcontrib>Saykin, Andrew J</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurobiology of aging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Jingwen</au><au>Li, Taiyong</au><au>Wang, Hua</au><au>Huang, Heng</au><au>Wan, Jing</au><au>Nho, Kwangsik</au><au>Kim, Sungeun</au><au>Risacher, Shannon L</au><au>Saykin, Andrew J</au><au>Shen, Li</au><aucorp>Alzheimer's Disease Neuroimaging Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm</atitle><jtitle>Neurobiology of aging</jtitle><addtitle>Neurobiol Aging</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>36</volume><spage>S185</spage><epage>S193</epage><pages>S185-S193</pages><issn>0197-4580</issn><issn>1558-1497</issn><eissn>1558-1497</eissn><abstract>Abstract Regression models have been widely studied to investigate the prediction power of neuroimaging measures as biomarkers for inferring cognitive outcomes in the Alzheimer's disease study. Most of these models ignore the interrelated structures either within neuroimaging measures or between cognitive outcomes, and thus may have limited power to yield optimal solutions. To address this issue, we propose to use a new sparse multitask learning model called Group-Sparse Multi-task Regression and Feature Selection (G-SMuRFS) and demonstrate its effectiveness by examining the predictive power of detailed cortical thickness measures toward 3 types of cognitive scores in a large cohort. G-SMuRFS proposes a group-level l2,1 -norm strategy to group relevant features together in an anatomically meaningful manner and use this prior knowledge to guide the learning process. This approach also takes into account the correlation among cognitive outcomes for building a more appropriate predictive model. Compared with traditional methods, G-SMuRFS not only demonstrates a superior performance but also identifies a small set of surface markers that are biologically meaningful.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25444599</pmid><doi>10.1016/j.neurobiolaging.2014.07.045</doi><orcidid>https://orcid.org/0000-0002-1376-8532</orcidid><orcidid>https://orcid.org/0000-0002-1546-8015</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0197-4580 |
ispartof | Neurobiology of aging, 2015-01, Vol.36, p.S185-S193 |
issn | 0197-4580 1558-1497 1558-1497 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4268071 |
source | ScienceDirect Freedom Collection |
subjects | Alzheimer Disease - diagnosis Alzheimer Disease - pathology Alzheimer Disease - psychology Alzheimer's disease neuroimaging initiative (ADNI) Biomarkers - metabolism Cerebral Cortex - pathology Cognition Cognitive function prediction Cohort Studies Cortical thickness Diagnostic Techniques, Neurological Forecasting Humans Internal Medicine Learning Magnetic resonance imaging (MRI) Neuroimaging Neurology Regression Analysis Sparse learning |
title | Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20surface%20biomarkers%20for%20predicting%20cognitive%20outcomes%20using%20group%20l2,1%20norm&rft.jtitle=Neurobiology%20of%20aging&rft.au=Yan,%20Jingwen&rft.aucorp=Alzheimer's%20Disease%20Neuroimaging%20Initiative&rft.date=2015-01-01&rft.volume=36&rft.spage=S185&rft.epage=S193&rft.pages=S185-S193&rft.issn=0197-4580&rft.eissn=1558-1497&rft_id=info:doi/10.1016/j.neurobiolaging.2014.07.045&rft_dat=%3Cproquest_pubme%3E1639489052%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c550t-1bf70b8e493ade1048c515d0c8e0d082390563364ab359afe45976149f0b238e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1639489052&rft_id=info:pmid/25444599&rfr_iscdi=true |