Loading…

Acute Exercise Stress Reveals Cerebrovascular Benefits Associated with Moderate Gains in Cardiorespiratory Fitness

Elevated cardiorespiratory fitness improves resting cerebral perfusion, although to what extent this is further amplified during acute exposure to exercise stress and the corresponding implications for cerebral oxygenation remain unknown. To examine this, we recruited 12 moderately active and 12 sed...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cerebral blood flow and metabolism 2014-12, Vol.34 (12), p.1873-1876
Main Authors: Brugniaux, Julien V, Marley, Christopher J, Hodson, Danielle A, New, Karl J, Bailey, Damian M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Elevated cardiorespiratory fitness improves resting cerebral perfusion, although to what extent this is further amplified during acute exposure to exercise stress and the corresponding implications for cerebral oxygenation remain unknown. To examine this, we recruited 12 moderately active and 12 sedentary healthy males. Middle cerebral artery blood velocity (MCAv) and prefrontal cortical oxyhemoglobin (cO2Hb) concentration were monitored continuously at rest and throughout an incremental cycling test to exhaustion. Despite a subtle elevation in the maximal oxygen uptake (active: 52 ± 9 ml/kg per minute versus sedentary: 33 ± 5 ml/kg per minute, P < 0.05), resting MCAv was not different between groups. However, more marked increases in both MCAv (+28 ± 13% versus +18 ± 6%, P < 0.05) and cO2Hb (+5 ±4% versus −2 ± 3%, P < 0.05) were observed in the active group during the transition from low- to moderate-intensity exercise. Collectively, these findings indicate that the long-term benefits associated with moderate increase in physical activity are not observed in the resting state and only become apparent when the cerebrovasculature is challenged by acute exertional stress. This has important clinical implications when assessing the true extent of cerebrovascular adaptation.
ISSN:0271-678X
1559-7016
DOI:10.1038/jcbfm.2014.142