Loading…

Effects of low level laser treatment on the survival of axotomized retinal ganglion cells in adult Hamsters

Injury to axons close to the neuronal bodies in the mammalian central nervous system causes a large proportion of parenting neurons to degenerate. It is known that optic nerve transection close to the eye in rodents leads to a loss of about half of retinal ganglion cells in 1 week and about 90% in 2...

Full description

Saved in:
Bibliographic Details
Published in:Neural regeneration research 2014-11, Vol.9 (21), p.1863-1869
Main Authors: So, Kwok-Fai, Leung, Mason Chin Pang, Cui, Qi
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Injury to axons close to the neuronal bodies in the mammalian central nervous system causes a large proportion of parenting neurons to degenerate. It is known that optic nerve transection close to the eye in rodents leads to a loss of about half of retinal ganglion cells in 1 week and about 90% in 2 weeks. Using low level laser treatment in the present study, we demonstrated that treatment with helium-neon (660 nm) laser with 15 mW power could delay retinal ganglion cell death after optic nerve axotomy in adult hamsters. The effect was most apparent in the ifrst week with a short period of treatment time (5 minutes) in which 65–66% of retinal ganglion cells survived the optic nerve axotomy whereas 45–47% of retinal ganglion cells did so in optic nerve axotomy controls. We also found that single dose and early commencement of laser irradiation were important in protecting retinal ganglion cells following optic nerve axotomy. These ifndings thus convincingly show that appropriate laser treatment may be neuroprotective to retinal gan-glion cells.
ISSN:1673-5374
1876-7958
DOI:10.4103/1673-5374.145337