Loading…
tigaR: integrative significance analysis of temporal differential gene expression induced by genomic abnormalities
To determine which changes in the host cell genome are crucial for cervical carcinogenesis, a longitudinal in vitro model system of HPV-transformed keratinocytes was profiled in a genome-wide manner. Four cell lines affected with either HPV16 or HPV18 were assayed at 8 sequential time points for gen...
Saved in:
Published in: | BMC bioinformatics 2014-10, Vol.15 (1), p.327-327, Article 327 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b651t-e462b3aea7674f059666eccd3b047a2d63f9b607cf9d356f683c5beae2cdd28f3 |
---|---|
cites | cdi_FETCH-LOGICAL-b651t-e462b3aea7674f059666eccd3b047a2d63f9b607cf9d356f683c5beae2cdd28f3 |
container_end_page | 327 |
container_issue | 1 |
container_start_page | 327 |
container_title | BMC bioinformatics |
container_volume | 15 |
creator | Miok, Viktorian Wilting, Saskia M van de Wiel, Mark A Jaspers, Annelieke van Noort, Paula I Brakenhoff, Ruud H Snijders, Peter J F Steenbergen, Renske D M van Wieringen, Wessel N |
description | To determine which changes in the host cell genome are crucial for cervical carcinogenesis, a longitudinal in vitro model system of HPV-transformed keratinocytes was profiled in a genome-wide manner. Four cell lines affected with either HPV16 or HPV18 were assayed at 8 sequential time points for gene expression (mRNA) and gene copy number (DNA) using high-resolution microarrays. Available methods for temporal differential expression analysis are not designed for integrative genomic studies.
Here, we present a method that allows for the identification of differential gene expression associated with DNA copy number changes over time. The temporal variation in gene expression is described by a generalized linear mixed model employing low-rank thin-plate splines. Model parameters are estimated with an empirical Bayes procedure, which exploits integrated nested Laplace approximation for fast computation. Iteratively, posteriors of hyperparameters and model parameters are estimated. The empirical Bayes procedure shrinks multiple dispersion-related parameters. Shrinkage leads to more stable estimates of the model parameters, better control of false positives and improvement of reproducibility. In addition, to make estimates of the DNA copy number more stable, model parameters are also estimated in a multivariate way using triplets of features, imposing a spatial prior for the copy number effect.
With the proposed method for analysis of time-course multilevel molecular data, more profound insight may be gained through the identification of temporal differential expression induced by DNA copy number abnormalities. In particular, in the analysis of an integrative oncogenomics study with a time-course set-up our method finds genes previously reported to be involved in cervical carcinogenesis. Furthermore, the proposed method yields improvements in sensitivity, specificity and reproducibility compared to existing methods. Finally, the proposed method is able to handle count (RNAseq) data from time course experiments as is shown on a real data set. |
doi_str_mv | 10.1186/1471-2105-15-327 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4288633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539461200</galeid><sourcerecordid>A539461200</sourcerecordid><originalsourceid>FETCH-LOGICAL-b651t-e462b3aea7674f059666eccd3b047a2d63f9b607cf9d356f683c5beae2cdd28f3</originalsourceid><addsrcrecordid>eNqNkt9rFDEQxxdRbD1990kWfNGHrfmxye76IJTDaqEgVH0O2WSypuwmZ5Itvf_ebK-ePakgCSSZ-cyXLzMpipcYnWDc8ne4bnBFMGIVZhUlzaPieB96fO9-VDyL8Qoh3LSIPS2OCCNNSxt8XIRkB3n5vrQuwRBkstdQRjs4a6ySTkEpnRy30cbSmzLBtPFBjqW2xkAAl2x-DOCghJtNgBitd1lKzwp02W-XlJ-sKmXvfJjkaJOF-Lx4YuQY4cXduSq-n338tv5cXXz5dL4-vah6znCqoOakpxJkw5vaINZxzkEpTXtUN5JoTk3Xc9Qo02nKuOEtVawHCURpTVpDV8WHne5m7ifQKtvN3sUm2EmGrfDSisOMsz_E4K9FTdqWU5oF1juB3vp_CBxmlJ_E0nOx9FxgJvJIssqbOxvB_5whJjHZqGAcpQM_R4GbjpKWkvo_UI7zJuTW2-u_0Cs_hzyrhUJdjRBF3R9qkCMI64zPPtUiKk4Z7eoslsFVcfIAlZeGPDzvwNgcPyh4e1CQmQQ3aZBzjOL86-Uhi3asCj7GAGbfP4zE8okf6tir-4PbF_z-tfQXp0btPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609400309</pqid></control><display><type>article</type><title>tigaR: integrative significance analysis of temporal differential gene expression induced by genomic abnormalities</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Miok, Viktorian ; Wilting, Saskia M ; van de Wiel, Mark A ; Jaspers, Annelieke ; van Noort, Paula I ; Brakenhoff, Ruud H ; Snijders, Peter J F ; Steenbergen, Renske D M ; van Wieringen, Wessel N</creator><creatorcontrib>Miok, Viktorian ; Wilting, Saskia M ; van de Wiel, Mark A ; Jaspers, Annelieke ; van Noort, Paula I ; Brakenhoff, Ruud H ; Snijders, Peter J F ; Steenbergen, Renske D M ; van Wieringen, Wessel N</creatorcontrib><description>To determine which changes in the host cell genome are crucial for cervical carcinogenesis, a longitudinal in vitro model system of HPV-transformed keratinocytes was profiled in a genome-wide manner. Four cell lines affected with either HPV16 or HPV18 were assayed at 8 sequential time points for gene expression (mRNA) and gene copy number (DNA) using high-resolution microarrays. Available methods for temporal differential expression analysis are not designed for integrative genomic studies.
Here, we present a method that allows for the identification of differential gene expression associated with DNA copy number changes over time. The temporal variation in gene expression is described by a generalized linear mixed model employing low-rank thin-plate splines. Model parameters are estimated with an empirical Bayes procedure, which exploits integrated nested Laplace approximation for fast computation. Iteratively, posteriors of hyperparameters and model parameters are estimated. The empirical Bayes procedure shrinks multiple dispersion-related parameters. Shrinkage leads to more stable estimates of the model parameters, better control of false positives and improvement of reproducibility. In addition, to make estimates of the DNA copy number more stable, model parameters are also estimated in a multivariate way using triplets of features, imposing a spatial prior for the copy number effect.
With the proposed method for analysis of time-course multilevel molecular data, more profound insight may be gained through the identification of temporal differential expression induced by DNA copy number abnormalities. In particular, in the analysis of an integrative oncogenomics study with a time-course set-up our method finds genes previously reported to be involved in cervical carcinogenesis. Furthermore, the proposed method yields improvements in sensitivity, specificity and reproducibility compared to existing methods. Finally, the proposed method is able to handle count (RNAseq) data from time course experiments as is shown on a real data set.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/1471-2105-15-327</identifier><identifier>PMID: 25278371</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Bayes Theorem ; Bayesian analysis ; Carcinogens ; Cell Line ; Cervical cancer ; Computer Simulation ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; DNA microarrays ; DNA, Complementary ; Estimates ; Gene Dosage ; Gene expression ; Gene Expression Regulation ; Genes ; Genetic aspects ; Genome ; Genomes ; Genomics ; Genomics - methods ; Head & neck cancer ; Host-Pathogen Interactions ; Human papillomavirus 16 ; Human papillomavirus 16 - physiology ; Human papillomavirus 18 ; Human papillomavirus 18 - physiology ; Humans ; Keratinocytes - metabolism ; Keratinocytes - virology ; Mathematical models ; Medical research ; Messenger RNA ; Methodology ; MicroRNAs ; Models, Genetic ; Papillomavirus Infections - genetics ; Random variables ; Reproduction ; RNA sequencing ; Statistical methods</subject><ispartof>BMC bioinformatics, 2014-10, Vol.15 (1), p.327-327, Article 327</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>2014 Miok et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.</rights><rights>Miok et al.; licensee BioMed Central Ltd. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b651t-e462b3aea7674f059666eccd3b047a2d63f9b607cf9d356f683c5beae2cdd28f3</citedby><cites>FETCH-LOGICAL-b651t-e462b3aea7674f059666eccd3b047a2d63f9b607cf9d356f683c5beae2cdd28f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4288633/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1609400309?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25278371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miok, Viktorian</creatorcontrib><creatorcontrib>Wilting, Saskia M</creatorcontrib><creatorcontrib>van de Wiel, Mark A</creatorcontrib><creatorcontrib>Jaspers, Annelieke</creatorcontrib><creatorcontrib>van Noort, Paula I</creatorcontrib><creatorcontrib>Brakenhoff, Ruud H</creatorcontrib><creatorcontrib>Snijders, Peter J F</creatorcontrib><creatorcontrib>Steenbergen, Renske D M</creatorcontrib><creatorcontrib>van Wieringen, Wessel N</creatorcontrib><title>tigaR: integrative significance analysis of temporal differential gene expression induced by genomic abnormalities</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>To determine which changes in the host cell genome are crucial for cervical carcinogenesis, a longitudinal in vitro model system of HPV-transformed keratinocytes was profiled in a genome-wide manner. Four cell lines affected with either HPV16 or HPV18 were assayed at 8 sequential time points for gene expression (mRNA) and gene copy number (DNA) using high-resolution microarrays. Available methods for temporal differential expression analysis are not designed for integrative genomic studies.
Here, we present a method that allows for the identification of differential gene expression associated with DNA copy number changes over time. The temporal variation in gene expression is described by a generalized linear mixed model employing low-rank thin-plate splines. Model parameters are estimated with an empirical Bayes procedure, which exploits integrated nested Laplace approximation for fast computation. Iteratively, posteriors of hyperparameters and model parameters are estimated. The empirical Bayes procedure shrinks multiple dispersion-related parameters. Shrinkage leads to more stable estimates of the model parameters, better control of false positives and improvement of reproducibility. In addition, to make estimates of the DNA copy number more stable, model parameters are also estimated in a multivariate way using triplets of features, imposing a spatial prior for the copy number effect.
With the proposed method for analysis of time-course multilevel molecular data, more profound insight may be gained through the identification of temporal differential expression induced by DNA copy number abnormalities. In particular, in the analysis of an integrative oncogenomics study with a time-course set-up our method finds genes previously reported to be involved in cervical carcinogenesis. Furthermore, the proposed method yields improvements in sensitivity, specificity and reproducibility compared to existing methods. Finally, the proposed method is able to handle count (RNAseq) data from time course experiments as is shown on a real data set.</description><subject>Analysis</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Carcinogens</subject><subject>Cell Line</subject><subject>Cervical cancer</subject><subject>Computer Simulation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA microarrays</subject><subject>DNA, Complementary</subject><subject>Estimates</subject><subject>Gene Dosage</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Head & neck cancer</subject><subject>Host-Pathogen Interactions</subject><subject>Human papillomavirus 16</subject><subject>Human papillomavirus 16 - physiology</subject><subject>Human papillomavirus 18</subject><subject>Human papillomavirus 18 - physiology</subject><subject>Humans</subject><subject>Keratinocytes - metabolism</subject><subject>Keratinocytes - virology</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Messenger RNA</subject><subject>Methodology</subject><subject>MicroRNAs</subject><subject>Models, Genetic</subject><subject>Papillomavirus Infections - genetics</subject><subject>Random variables</subject><subject>Reproduction</subject><subject>RNA sequencing</subject><subject>Statistical methods</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkt9rFDEQxxdRbD1990kWfNGHrfmxye76IJTDaqEgVH0O2WSypuwmZ5Itvf_ebK-ePakgCSSZ-cyXLzMpipcYnWDc8ne4bnBFMGIVZhUlzaPieB96fO9-VDyL8Qoh3LSIPS2OCCNNSxt8XIRkB3n5vrQuwRBkstdQRjs4a6ySTkEpnRy30cbSmzLBtPFBjqW2xkAAl2x-DOCghJtNgBitd1lKzwp02W-XlJ-sKmXvfJjkaJOF-Lx4YuQY4cXduSq-n338tv5cXXz5dL4-vah6znCqoOakpxJkw5vaINZxzkEpTXtUN5JoTk3Xc9Qo02nKuOEtVawHCURpTVpDV8WHne5m7ifQKtvN3sUm2EmGrfDSisOMsz_E4K9FTdqWU5oF1juB3vp_CBxmlJ_E0nOx9FxgJvJIssqbOxvB_5whJjHZqGAcpQM_R4GbjpKWkvo_UI7zJuTW2-u_0Cs_hzyrhUJdjRBF3R9qkCMI64zPPtUiKk4Z7eoslsFVcfIAlZeGPDzvwNgcPyh4e1CQmQQ3aZBzjOL86-Uhi3asCj7GAGbfP4zE8okf6tir-4PbF_z-tfQXp0btPw</recordid><startdate>20141002</startdate><enddate>20141002</enddate><creator>Miok, Viktorian</creator><creator>Wilting, Saskia M</creator><creator>van de Wiel, Mark A</creator><creator>Jaspers, Annelieke</creator><creator>van Noort, Paula I</creator><creator>Brakenhoff, Ruud H</creator><creator>Snijders, Peter J F</creator><creator>Steenbergen, Renske D M</creator><creator>van Wieringen, Wessel N</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20141002</creationdate><title>tigaR: integrative significance analysis of temporal differential gene expression induced by genomic abnormalities</title><author>Miok, Viktorian ; Wilting, Saskia M ; van de Wiel, Mark A ; Jaspers, Annelieke ; van Noort, Paula I ; Brakenhoff, Ruud H ; Snijders, Peter J F ; Steenbergen, Renske D M ; van Wieringen, Wessel N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b651t-e462b3aea7674f059666eccd3b047a2d63f9b607cf9d356f683c5beae2cdd28f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Carcinogens</topic><topic>Cell Line</topic><topic>Cervical cancer</topic><topic>Computer Simulation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA microarrays</topic><topic>DNA, Complementary</topic><topic>Estimates</topic><topic>Gene Dosage</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Head & neck cancer</topic><topic>Host-Pathogen Interactions</topic><topic>Human papillomavirus 16</topic><topic>Human papillomavirus 16 - physiology</topic><topic>Human papillomavirus 18</topic><topic>Human papillomavirus 18 - physiology</topic><topic>Humans</topic><topic>Keratinocytes - metabolism</topic><topic>Keratinocytes - virology</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Messenger RNA</topic><topic>Methodology</topic><topic>MicroRNAs</topic><topic>Models, Genetic</topic><topic>Papillomavirus Infections - genetics</topic><topic>Random variables</topic><topic>Reproduction</topic><topic>RNA sequencing</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miok, Viktorian</creatorcontrib><creatorcontrib>Wilting, Saskia M</creatorcontrib><creatorcontrib>van de Wiel, Mark A</creatorcontrib><creatorcontrib>Jaspers, Annelieke</creatorcontrib><creatorcontrib>van Noort, Paula I</creatorcontrib><creatorcontrib>Brakenhoff, Ruud H</creatorcontrib><creatorcontrib>Snijders, Peter J F</creatorcontrib><creatorcontrib>Steenbergen, Renske D M</creatorcontrib><creatorcontrib>van Wieringen, Wessel N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miok, Viktorian</au><au>Wilting, Saskia M</au><au>van de Wiel, Mark A</au><au>Jaspers, Annelieke</au><au>van Noort, Paula I</au><au>Brakenhoff, Ruud H</au><au>Snijders, Peter J F</au><au>Steenbergen, Renske D M</au><au>van Wieringen, Wessel N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>tigaR: integrative significance analysis of temporal differential gene expression induced by genomic abnormalities</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2014-10-02</date><risdate>2014</risdate><volume>15</volume><issue>1</issue><spage>327</spage><epage>327</epage><pages>327-327</pages><artnum>327</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>To determine which changes in the host cell genome are crucial for cervical carcinogenesis, a longitudinal in vitro model system of HPV-transformed keratinocytes was profiled in a genome-wide manner. Four cell lines affected with either HPV16 or HPV18 were assayed at 8 sequential time points for gene expression (mRNA) and gene copy number (DNA) using high-resolution microarrays. Available methods for temporal differential expression analysis are not designed for integrative genomic studies.
Here, we present a method that allows for the identification of differential gene expression associated with DNA copy number changes over time. The temporal variation in gene expression is described by a generalized linear mixed model employing low-rank thin-plate splines. Model parameters are estimated with an empirical Bayes procedure, which exploits integrated nested Laplace approximation for fast computation. Iteratively, posteriors of hyperparameters and model parameters are estimated. The empirical Bayes procedure shrinks multiple dispersion-related parameters. Shrinkage leads to more stable estimates of the model parameters, better control of false positives and improvement of reproducibility. In addition, to make estimates of the DNA copy number more stable, model parameters are also estimated in a multivariate way using triplets of features, imposing a spatial prior for the copy number effect.
With the proposed method for analysis of time-course multilevel molecular data, more profound insight may be gained through the identification of temporal differential expression induced by DNA copy number abnormalities. In particular, in the analysis of an integrative oncogenomics study with a time-course set-up our method finds genes previously reported to be involved in cervical carcinogenesis. Furthermore, the proposed method yields improvements in sensitivity, specificity and reproducibility compared to existing methods. Finally, the proposed method is able to handle count (RNAseq) data from time course experiments as is shown on a real data set.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>25278371</pmid><doi>10.1186/1471-2105-15-327</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2014-10, Vol.15 (1), p.327-327, Article 327 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4288633 |
source | Publicly Available Content Database; PubMed Central |
subjects | Analysis Bayes Theorem Bayesian analysis Carcinogens Cell Line Cervical cancer Computer Simulation Deoxyribonucleic acid DNA DNA - genetics DNA microarrays DNA, Complementary Estimates Gene Dosage Gene expression Gene Expression Regulation Genes Genetic aspects Genome Genomes Genomics Genomics - methods Head & neck cancer Host-Pathogen Interactions Human papillomavirus 16 Human papillomavirus 16 - physiology Human papillomavirus 18 Human papillomavirus 18 - physiology Humans Keratinocytes - metabolism Keratinocytes - virology Mathematical models Medical research Messenger RNA Methodology MicroRNAs Models, Genetic Papillomavirus Infections - genetics Random variables Reproduction RNA sequencing Statistical methods |
title | tigaR: integrative significance analysis of temporal differential gene expression induced by genomic abnormalities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A41%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=tigaR:%20integrative%20significance%20analysis%20of%20temporal%20differential%20gene%20expression%20induced%20by%20genomic%20abnormalities&rft.jtitle=BMC%20bioinformatics&rft.au=Miok,%20Viktorian&rft.date=2014-10-02&rft.volume=15&rft.issue=1&rft.spage=327&rft.epage=327&rft.pages=327-327&rft.artnum=327&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-15-327&rft_dat=%3Cgale_pubme%3EA539461200%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b651t-e462b3aea7674f059666eccd3b047a2d63f9b607cf9d356f683c5beae2cdd28f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1609400309&rft_id=info:pmid/25278371&rft_galeid=A539461200&rfr_iscdi=true |