Loading…

tigaR: integrative significance analysis of temporal differential gene expression induced by genomic abnormalities

To determine which changes in the host cell genome are crucial for cervical carcinogenesis, a longitudinal in vitro model system of HPV-transformed keratinocytes was profiled in a genome-wide manner. Four cell lines affected with either HPV16 or HPV18 were assayed at 8 sequential time points for gen...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics 2014-10, Vol.15 (1), p.327-327, Article 327
Main Authors: Miok, Viktorian, Wilting, Saskia M, van de Wiel, Mark A, Jaspers, Annelieke, van Noort, Paula I, Brakenhoff, Ruud H, Snijders, Peter J F, Steenbergen, Renske D M, van Wieringen, Wessel N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b651t-e462b3aea7674f059666eccd3b047a2d63f9b607cf9d356f683c5beae2cdd28f3
cites cdi_FETCH-LOGICAL-b651t-e462b3aea7674f059666eccd3b047a2d63f9b607cf9d356f683c5beae2cdd28f3
container_end_page 327
container_issue 1
container_start_page 327
container_title BMC bioinformatics
container_volume 15
creator Miok, Viktorian
Wilting, Saskia M
van de Wiel, Mark A
Jaspers, Annelieke
van Noort, Paula I
Brakenhoff, Ruud H
Snijders, Peter J F
Steenbergen, Renske D M
van Wieringen, Wessel N
description To determine which changes in the host cell genome are crucial for cervical carcinogenesis, a longitudinal in vitro model system of HPV-transformed keratinocytes was profiled in a genome-wide manner. Four cell lines affected with either HPV16 or HPV18 were assayed at 8 sequential time points for gene expression (mRNA) and gene copy number (DNA) using high-resolution microarrays. Available methods for temporal differential expression analysis are not designed for integrative genomic studies. Here, we present a method that allows for the identification of differential gene expression associated with DNA copy number changes over time. The temporal variation in gene expression is described by a generalized linear mixed model employing low-rank thin-plate splines. Model parameters are estimated with an empirical Bayes procedure, which exploits integrated nested Laplace approximation for fast computation. Iteratively, posteriors of hyperparameters and model parameters are estimated. The empirical Bayes procedure shrinks multiple dispersion-related parameters. Shrinkage leads to more stable estimates of the model parameters, better control of false positives and improvement of reproducibility. In addition, to make estimates of the DNA copy number more stable, model parameters are also estimated in a multivariate way using triplets of features, imposing a spatial prior for the copy number effect. With the proposed method for analysis of time-course multilevel molecular data, more profound insight may be gained through the identification of temporal differential expression induced by DNA copy number abnormalities. In particular, in the analysis of an integrative oncogenomics study with a time-course set-up our method finds genes previously reported to be involved in cervical carcinogenesis. Furthermore, the proposed method yields improvements in sensitivity, specificity and reproducibility compared to existing methods. Finally, the proposed method is able to handle count (RNAseq) data from time course experiments as is shown on a real data set.
doi_str_mv 10.1186/1471-2105-15-327
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4288633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539461200</galeid><sourcerecordid>A539461200</sourcerecordid><originalsourceid>FETCH-LOGICAL-b651t-e462b3aea7674f059666eccd3b047a2d63f9b607cf9d356f683c5beae2cdd28f3</originalsourceid><addsrcrecordid>eNqNkt9rFDEQxxdRbD1990kWfNGHrfmxye76IJTDaqEgVH0O2WSypuwmZ5Itvf_ebK-ePakgCSSZ-cyXLzMpipcYnWDc8ne4bnBFMGIVZhUlzaPieB96fO9-VDyL8Qoh3LSIPS2OCCNNSxt8XIRkB3n5vrQuwRBkstdQRjs4a6ySTkEpnRy30cbSmzLBtPFBjqW2xkAAl2x-DOCghJtNgBitd1lKzwp02W-XlJ-sKmXvfJjkaJOF-Lx4YuQY4cXduSq-n338tv5cXXz5dL4-vah6znCqoOakpxJkw5vaINZxzkEpTXtUN5JoTk3Xc9Qo02nKuOEtVawHCURpTVpDV8WHne5m7ifQKtvN3sUm2EmGrfDSisOMsz_E4K9FTdqWU5oF1juB3vp_CBxmlJ_E0nOx9FxgJvJIssqbOxvB_5whJjHZqGAcpQM_R4GbjpKWkvo_UI7zJuTW2-u_0Cs_hzyrhUJdjRBF3R9qkCMI64zPPtUiKk4Z7eoslsFVcfIAlZeGPDzvwNgcPyh4e1CQmQQ3aZBzjOL86-Uhi3asCj7GAGbfP4zE8okf6tir-4PbF_z-tfQXp0btPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609400309</pqid></control><display><type>article</type><title>tigaR: integrative significance analysis of temporal differential gene expression induced by genomic abnormalities</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Miok, Viktorian ; Wilting, Saskia M ; van de Wiel, Mark A ; Jaspers, Annelieke ; van Noort, Paula I ; Brakenhoff, Ruud H ; Snijders, Peter J F ; Steenbergen, Renske D M ; van Wieringen, Wessel N</creator><creatorcontrib>Miok, Viktorian ; Wilting, Saskia M ; van de Wiel, Mark A ; Jaspers, Annelieke ; van Noort, Paula I ; Brakenhoff, Ruud H ; Snijders, Peter J F ; Steenbergen, Renske D M ; van Wieringen, Wessel N</creatorcontrib><description>To determine which changes in the host cell genome are crucial for cervical carcinogenesis, a longitudinal in vitro model system of HPV-transformed keratinocytes was profiled in a genome-wide manner. Four cell lines affected with either HPV16 or HPV18 were assayed at 8 sequential time points for gene expression (mRNA) and gene copy number (DNA) using high-resolution microarrays. Available methods for temporal differential expression analysis are not designed for integrative genomic studies. Here, we present a method that allows for the identification of differential gene expression associated with DNA copy number changes over time. The temporal variation in gene expression is described by a generalized linear mixed model employing low-rank thin-plate splines. Model parameters are estimated with an empirical Bayes procedure, which exploits integrated nested Laplace approximation for fast computation. Iteratively, posteriors of hyperparameters and model parameters are estimated. The empirical Bayes procedure shrinks multiple dispersion-related parameters. Shrinkage leads to more stable estimates of the model parameters, better control of false positives and improvement of reproducibility. In addition, to make estimates of the DNA copy number more stable, model parameters are also estimated in a multivariate way using triplets of features, imposing a spatial prior for the copy number effect. With the proposed method for analysis of time-course multilevel molecular data, more profound insight may be gained through the identification of temporal differential expression induced by DNA copy number abnormalities. In particular, in the analysis of an integrative oncogenomics study with a time-course set-up our method finds genes previously reported to be involved in cervical carcinogenesis. Furthermore, the proposed method yields improvements in sensitivity, specificity and reproducibility compared to existing methods. Finally, the proposed method is able to handle count (RNAseq) data from time course experiments as is shown on a real data set.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/1471-2105-15-327</identifier><identifier>PMID: 25278371</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Bayes Theorem ; Bayesian analysis ; Carcinogens ; Cell Line ; Cervical cancer ; Computer Simulation ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; DNA microarrays ; DNA, Complementary ; Estimates ; Gene Dosage ; Gene expression ; Gene Expression Regulation ; Genes ; Genetic aspects ; Genome ; Genomes ; Genomics ; Genomics - methods ; Head &amp; neck cancer ; Host-Pathogen Interactions ; Human papillomavirus 16 ; Human papillomavirus 16 - physiology ; Human papillomavirus 18 ; Human papillomavirus 18 - physiology ; Humans ; Keratinocytes - metabolism ; Keratinocytes - virology ; Mathematical models ; Medical research ; Messenger RNA ; Methodology ; MicroRNAs ; Models, Genetic ; Papillomavirus Infections - genetics ; Random variables ; Reproduction ; RNA sequencing ; Statistical methods</subject><ispartof>BMC bioinformatics, 2014-10, Vol.15 (1), p.327-327, Article 327</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>2014 Miok et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.</rights><rights>Miok et al.; licensee BioMed Central Ltd. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b651t-e462b3aea7674f059666eccd3b047a2d63f9b607cf9d356f683c5beae2cdd28f3</citedby><cites>FETCH-LOGICAL-b651t-e462b3aea7674f059666eccd3b047a2d63f9b607cf9d356f683c5beae2cdd28f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4288633/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1609400309?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25278371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miok, Viktorian</creatorcontrib><creatorcontrib>Wilting, Saskia M</creatorcontrib><creatorcontrib>van de Wiel, Mark A</creatorcontrib><creatorcontrib>Jaspers, Annelieke</creatorcontrib><creatorcontrib>van Noort, Paula I</creatorcontrib><creatorcontrib>Brakenhoff, Ruud H</creatorcontrib><creatorcontrib>Snijders, Peter J F</creatorcontrib><creatorcontrib>Steenbergen, Renske D M</creatorcontrib><creatorcontrib>van Wieringen, Wessel N</creatorcontrib><title>tigaR: integrative significance analysis of temporal differential gene expression induced by genomic abnormalities</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>To determine which changes in the host cell genome are crucial for cervical carcinogenesis, a longitudinal in vitro model system of HPV-transformed keratinocytes was profiled in a genome-wide manner. Four cell lines affected with either HPV16 or HPV18 were assayed at 8 sequential time points for gene expression (mRNA) and gene copy number (DNA) using high-resolution microarrays. Available methods for temporal differential expression analysis are not designed for integrative genomic studies. Here, we present a method that allows for the identification of differential gene expression associated with DNA copy number changes over time. The temporal variation in gene expression is described by a generalized linear mixed model employing low-rank thin-plate splines. Model parameters are estimated with an empirical Bayes procedure, which exploits integrated nested Laplace approximation for fast computation. Iteratively, posteriors of hyperparameters and model parameters are estimated. The empirical Bayes procedure shrinks multiple dispersion-related parameters. Shrinkage leads to more stable estimates of the model parameters, better control of false positives and improvement of reproducibility. In addition, to make estimates of the DNA copy number more stable, model parameters are also estimated in a multivariate way using triplets of features, imposing a spatial prior for the copy number effect. With the proposed method for analysis of time-course multilevel molecular data, more profound insight may be gained through the identification of temporal differential expression induced by DNA copy number abnormalities. In particular, in the analysis of an integrative oncogenomics study with a time-course set-up our method finds genes previously reported to be involved in cervical carcinogenesis. Furthermore, the proposed method yields improvements in sensitivity, specificity and reproducibility compared to existing methods. Finally, the proposed method is able to handle count (RNAseq) data from time course experiments as is shown on a real data set.</description><subject>Analysis</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Carcinogens</subject><subject>Cell Line</subject><subject>Cervical cancer</subject><subject>Computer Simulation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA microarrays</subject><subject>DNA, Complementary</subject><subject>Estimates</subject><subject>Gene Dosage</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Head &amp; neck cancer</subject><subject>Host-Pathogen Interactions</subject><subject>Human papillomavirus 16</subject><subject>Human papillomavirus 16 - physiology</subject><subject>Human papillomavirus 18</subject><subject>Human papillomavirus 18 - physiology</subject><subject>Humans</subject><subject>Keratinocytes - metabolism</subject><subject>Keratinocytes - virology</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Messenger RNA</subject><subject>Methodology</subject><subject>MicroRNAs</subject><subject>Models, Genetic</subject><subject>Papillomavirus Infections - genetics</subject><subject>Random variables</subject><subject>Reproduction</subject><subject>RNA sequencing</subject><subject>Statistical methods</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkt9rFDEQxxdRbD1990kWfNGHrfmxye76IJTDaqEgVH0O2WSypuwmZ5Itvf_ebK-ePakgCSSZ-cyXLzMpipcYnWDc8ne4bnBFMGIVZhUlzaPieB96fO9-VDyL8Qoh3LSIPS2OCCNNSxt8XIRkB3n5vrQuwRBkstdQRjs4a6ySTkEpnRy30cbSmzLBtPFBjqW2xkAAl2x-DOCghJtNgBitd1lKzwp02W-XlJ-sKmXvfJjkaJOF-Lx4YuQY4cXduSq-n338tv5cXXz5dL4-vah6znCqoOakpxJkw5vaINZxzkEpTXtUN5JoTk3Xc9Qo02nKuOEtVawHCURpTVpDV8WHne5m7ifQKtvN3sUm2EmGrfDSisOMsz_E4K9FTdqWU5oF1juB3vp_CBxmlJ_E0nOx9FxgJvJIssqbOxvB_5whJjHZqGAcpQM_R4GbjpKWkvo_UI7zJuTW2-u_0Cs_hzyrhUJdjRBF3R9qkCMI64zPPtUiKk4Z7eoslsFVcfIAlZeGPDzvwNgcPyh4e1CQmQQ3aZBzjOL86-Uhi3asCj7GAGbfP4zE8okf6tir-4PbF_z-tfQXp0btPw</recordid><startdate>20141002</startdate><enddate>20141002</enddate><creator>Miok, Viktorian</creator><creator>Wilting, Saskia M</creator><creator>van de Wiel, Mark A</creator><creator>Jaspers, Annelieke</creator><creator>van Noort, Paula I</creator><creator>Brakenhoff, Ruud H</creator><creator>Snijders, Peter J F</creator><creator>Steenbergen, Renske D M</creator><creator>van Wieringen, Wessel N</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20141002</creationdate><title>tigaR: integrative significance analysis of temporal differential gene expression induced by genomic abnormalities</title><author>Miok, Viktorian ; Wilting, Saskia M ; van de Wiel, Mark A ; Jaspers, Annelieke ; van Noort, Paula I ; Brakenhoff, Ruud H ; Snijders, Peter J F ; Steenbergen, Renske D M ; van Wieringen, Wessel N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b651t-e462b3aea7674f059666eccd3b047a2d63f9b607cf9d356f683c5beae2cdd28f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Carcinogens</topic><topic>Cell Line</topic><topic>Cervical cancer</topic><topic>Computer Simulation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA microarrays</topic><topic>DNA, Complementary</topic><topic>Estimates</topic><topic>Gene Dosage</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Head &amp; neck cancer</topic><topic>Host-Pathogen Interactions</topic><topic>Human papillomavirus 16</topic><topic>Human papillomavirus 16 - physiology</topic><topic>Human papillomavirus 18</topic><topic>Human papillomavirus 18 - physiology</topic><topic>Humans</topic><topic>Keratinocytes - metabolism</topic><topic>Keratinocytes - virology</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Messenger RNA</topic><topic>Methodology</topic><topic>MicroRNAs</topic><topic>Models, Genetic</topic><topic>Papillomavirus Infections - genetics</topic><topic>Random variables</topic><topic>Reproduction</topic><topic>RNA sequencing</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miok, Viktorian</creatorcontrib><creatorcontrib>Wilting, Saskia M</creatorcontrib><creatorcontrib>van de Wiel, Mark A</creatorcontrib><creatorcontrib>Jaspers, Annelieke</creatorcontrib><creatorcontrib>van Noort, Paula I</creatorcontrib><creatorcontrib>Brakenhoff, Ruud H</creatorcontrib><creatorcontrib>Snijders, Peter J F</creatorcontrib><creatorcontrib>Steenbergen, Renske D M</creatorcontrib><creatorcontrib>van Wieringen, Wessel N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miok, Viktorian</au><au>Wilting, Saskia M</au><au>van de Wiel, Mark A</au><au>Jaspers, Annelieke</au><au>van Noort, Paula I</au><au>Brakenhoff, Ruud H</au><au>Snijders, Peter J F</au><au>Steenbergen, Renske D M</au><au>van Wieringen, Wessel N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>tigaR: integrative significance analysis of temporal differential gene expression induced by genomic abnormalities</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2014-10-02</date><risdate>2014</risdate><volume>15</volume><issue>1</issue><spage>327</spage><epage>327</epage><pages>327-327</pages><artnum>327</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>To determine which changes in the host cell genome are crucial for cervical carcinogenesis, a longitudinal in vitro model system of HPV-transformed keratinocytes was profiled in a genome-wide manner. Four cell lines affected with either HPV16 or HPV18 were assayed at 8 sequential time points for gene expression (mRNA) and gene copy number (DNA) using high-resolution microarrays. Available methods for temporal differential expression analysis are not designed for integrative genomic studies. Here, we present a method that allows for the identification of differential gene expression associated with DNA copy number changes over time. The temporal variation in gene expression is described by a generalized linear mixed model employing low-rank thin-plate splines. Model parameters are estimated with an empirical Bayes procedure, which exploits integrated nested Laplace approximation for fast computation. Iteratively, posteriors of hyperparameters and model parameters are estimated. The empirical Bayes procedure shrinks multiple dispersion-related parameters. Shrinkage leads to more stable estimates of the model parameters, better control of false positives and improvement of reproducibility. In addition, to make estimates of the DNA copy number more stable, model parameters are also estimated in a multivariate way using triplets of features, imposing a spatial prior for the copy number effect. With the proposed method for analysis of time-course multilevel molecular data, more profound insight may be gained through the identification of temporal differential expression induced by DNA copy number abnormalities. In particular, in the analysis of an integrative oncogenomics study with a time-course set-up our method finds genes previously reported to be involved in cervical carcinogenesis. Furthermore, the proposed method yields improvements in sensitivity, specificity and reproducibility compared to existing methods. Finally, the proposed method is able to handle count (RNAseq) data from time course experiments as is shown on a real data set.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>25278371</pmid><doi>10.1186/1471-2105-15-327</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2014-10, Vol.15 (1), p.327-327, Article 327
issn 1471-2105
1471-2105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4288633
source Publicly Available Content Database; PubMed Central
subjects Analysis
Bayes Theorem
Bayesian analysis
Carcinogens
Cell Line
Cervical cancer
Computer Simulation
Deoxyribonucleic acid
DNA
DNA - genetics
DNA microarrays
DNA, Complementary
Estimates
Gene Dosage
Gene expression
Gene Expression Regulation
Genes
Genetic aspects
Genome
Genomes
Genomics
Genomics - methods
Head & neck cancer
Host-Pathogen Interactions
Human papillomavirus 16
Human papillomavirus 16 - physiology
Human papillomavirus 18
Human papillomavirus 18 - physiology
Humans
Keratinocytes - metabolism
Keratinocytes - virology
Mathematical models
Medical research
Messenger RNA
Methodology
MicroRNAs
Models, Genetic
Papillomavirus Infections - genetics
Random variables
Reproduction
RNA sequencing
Statistical methods
title tigaR: integrative significance analysis of temporal differential gene expression induced by genomic abnormalities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A41%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=tigaR:%20integrative%20significance%20analysis%20of%20temporal%20differential%20gene%20expression%20induced%20by%20genomic%20abnormalities&rft.jtitle=BMC%20bioinformatics&rft.au=Miok,%20Viktorian&rft.date=2014-10-02&rft.volume=15&rft.issue=1&rft.spage=327&rft.epage=327&rft.pages=327-327&rft.artnum=327&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-15-327&rft_dat=%3Cgale_pubme%3EA539461200%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b651t-e462b3aea7674f059666eccd3b047a2d63f9b607cf9d356f683c5beae2cdd28f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1609400309&rft_id=info:pmid/25278371&rft_galeid=A539461200&rfr_iscdi=true