Loading…

NOD2 Mediates Odontoblast Differentiation and RANKL Expression

The precise regulation of odontoblast differentiation and osteoclastogenic cytokine expression in human dental pulp cells (HDPCs) is crucial for the pathology of bacteria-related pulpitis. Although the up-regulation of nucleotide-binding oligomerization domain-containing protein 2 (NOD2) has been re...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dental research 2014-07, Vol.93 (7), p.678-684
Main Authors: Lee, S.-I., Kim, G.-T., Kim, H.J., Park, S.-H., Kim, E.-C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The precise regulation of odontoblast differentiation and osteoclastogenic cytokine expression in human dental pulp cells (HDPCs) is crucial for the pathology of bacteria-related pulpitis. Although the up-regulation of nucleotide-binding oligomerization domain-containing protein 2 (NOD2) has been reported in inflamed human dental pulps, the role of NOD2 in the differentiation of HDPCs remains unclear. Here, we show the involvement of NOD2 in odontoblast differentiation together with osteoclastogenic cytokine expression in HDPCs. Treatment with muramyl dipeptide (MDP), a known NOD2-agonist, significantly inhibited odontoblast differentiation of HDPCs, as revealed by reduced ALP activity, osteoblast/odontoblast marker expression, and mineralized nodule formation. Importantly, the forced down-regulation of NOD2 by small interfering RNA (siRNA) recovered MDP-down-regulated odontoblast differentiation. MDP-elicited suppression of odontoblast differentiation resulted from the increased expression of MKP-1 protein and the subsequent decline of MAPKs phosphorylation, which is a prerequisite for odontoblast differentiation. Furthermore, we found that MDP treatment elevated the expression of osteoclastogenic cytokines in HDPCs, which was also reversed by NOD2 silencing. Analysis of these data, taken together, suggests that the regulation of NOD2 expression upon MDP challenge might serve as an intrinsic mechanism that underlies the hindered dentin formation and accelerated dentin resorption in bacterial infection-mediated pulpitis. Abbreviations: HDPCs, human dental pulp cells; NOD2, nucleotide-binding oligomerization domain-containing protein 2; MDP, muramyl dipeptide; siRNA, small interfering RNA; MAPKs, mitogen-activated protein kinases; MKP-1, MAPK phosphatase-1; BMMs, bone-marrow-derived macrophages; and CM, conditioned medium.
ISSN:0022-0345
1544-0591
1544-0591
DOI:10.1177/0022034514535214