Loading…

Relationships of retinal structure and humphrey 24-2 visual field thresholds in patients with glaucoma

To determine relationships between spectral-domain optical coherence tomography (SD-OCT) derived regional damage to the retinal ganglion cell-axonal complex (RGC-AC) and visual thresholds for each location of the Humphrey 24-2 visual field, in all stages of open-angle glaucoma. Patients with early,...

Full description

Saved in:
Bibliographic Details
Published in:Investigative ophthalmology & visual science 2014-12, Vol.56 (1), p.259-271
Main Authors: Bogunović, Hrvoje, Kwon, Young H, Rashid, Adnan, Lee, Kyungmoo, Critser, Douglas B, Garvin, Mona K, Sonka, Milan, Abràmoff, Michael D
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To determine relationships between spectral-domain optical coherence tomography (SD-OCT) derived regional damage to the retinal ganglion cell-axonal complex (RGC-AC) and visual thresholds for each location of the Humphrey 24-2 visual field, in all stages of open-angle glaucoma. Patients with early, moderate, and advanced glaucoma were recruited from a tertiary glaucoma clinic. Humphrey 24-2 and 9-field Spectralis SD-OCT were acquired for each subject. Individual OCT volumes were aligned, nerve fiber layer (NFL), ganglion cell and inner plexiform layers (GCL+IPL) cosegmented. These layers were then partitioned into 54 sectors corresponding to the 24-2 grid. A Support Vector Machine was trained independently for each sector to predict the sector threshold, using these structural properties. One hundred twenty-two consecutive subjects, 43 early, 39 moderate, and 40 advanced, glaucoma were included (122 eyes). Average correlation coefficient (R) was 0.68 (0.47-0.82), and average root mean square error (RMSE) was 6.92 dB (3.93-8.68 dB). Prediction performance averaged over the entire field, superior hemifield, and inferior hemifield had R (RMSE) values of 0.77 (3.76), 0.80 (5.05), and 0.84 (3.80) dB, respectively. Predicting individual 24-2 visual field thresholds from structural information derived from nine-field SD-OCT local NFL and GCL+IPL thicknesses using the RGC-AC concept is feasible, showing the potential for the predictive ability of SD-OCT structural information for visual function. Ultimately, it may be feasible to complement and reduce the burden of subjective visual field testing in glaucoma patients with predicted function derived objectively from OCT.
ISSN:0146-0404
1552-5783
DOI:10.1167/iovs.14-15885