Loading…
Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase
Eukaryotic cells can synthesize the non‐essential amino acid arginine from aspartate and citrulline using the enzyme argininosuccinate synthetase (ASS). It has been observed that ASS is underexpressed in various types of cancers ASS, for which arginine become auxotrophic. Arginine deiminase (ADI) is...
Saved in:
Published in: | International journal of cancer 2008-10, Vol.123 (8), p.1950-1955 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Eukaryotic cells can synthesize the non‐essential amino acid arginine from aspartate and citrulline using the enzyme argininosuccinate synthetase (ASS). It has been observed that ASS is underexpressed in various types of cancers ASS, for which arginine become auxotrophic. Arginine deiminase (ADI) is a prokaryotic enzyme that metabolizes arginine to citrulline and has been found to inhibit melanoma and hepatoma cancer cells deficient of ASS. We tested the hypothesis that pancreatic cancers have low ASS expression and therefore arginine deprivation by ADI will inhibit cell growth. ASS expression was examined in 47 malignant and 20 non‐neoplastic pancreatic tissues as well as a panel of human pancreatic cancer cell lines. Arginine deprivation was achieved by treatment with a recombinant form of ADI formulated with polyethylene glycol (PEG‐ADI). Effects on caspase activation, cell growth and cell death were examined. Furthermore, the effect of PEG‐ADI on the in vivo growth of pancreatic xenografts was examined. Eighty‐seven percent of the tumors lacked ASS expression; 5 of 7 cell lines similarly lacked ASS expression. PEG‐ADI specifically inhibited growth of those cell lines lacking ASS. PEG‐ADI treatment induced caspase activation and induction of apoptosis. PEG‐ADI was well tolerated in mice despite complete elimination of plasma arginine; tumor growth was inhibited by ∼50%. Reduced expression of ASS occurs in pancreatic cancer and predicts sensitivity to arginine deprivation achieved by PEG‐ADI treatment. Therefore, these findings suggest that arginine deprivation by ADI could provide a beneficial strategy for the treatment of pancreatic cancer, a malignancy in which new therapy is desperately needed. © 2008 Wiley‐Liss, Inc. |
---|---|
ISSN: | 0020-7136 1097-0215 |
DOI: | 10.1002/ijc.23723 |