Loading…
Molecular regulation of the expression of leptin by hypoxia in human coronary artery smooth muscle cells
Leptin, produced mainly by white adipose tissue, is a hormone that promotes vascular smooth muscle cell (VSMC) migration and proliferation, a process involved in the pathophysiology of atherosclerosis. Leptin expression in human coronary artery smooth cell (HCASMC) is induced by hypoxia. However, ou...
Saved in:
Published in: | Journal of biomedical science 2015-01, Vol.22 (1), p.5-5, Article 5 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Leptin, produced mainly by white adipose tissue, is a hormone that promotes vascular smooth muscle cell (VSMC) migration and proliferation, a process involved in the pathophysiology of atherosclerosis. Leptin expression in human coronary artery smooth cell (HCASMC) is induced by hypoxia. However, our understanding of the process of atherosclerosis in HCASMC is only emerging. Since the mechanisms by which hypoxia regulates leptin in HCASMC are as yet unknown, this study aims to investigate the mechanics of molecular regulation of leptin expression in HCASMC under hypoxia. We subjected cultured HCASMCs to hypoxia for varying periods of time. Through use of different signal pathway inhibitors, we were able to sort out and identify the pathway through which hypoxia-induced leptin expression occurs.
Leptin mRNA and protein levels increased after 2.5% hypoxia for 2-to-4Â hours, with earlier expression of angiotensin II (AngII) and reactive oxygen species (ROS). The addition before hypoxia of the c-Jun N-terminal kinase (JNK) pathway inhibitor (SP600125), JNK small interfering RNA (siRNA), AngII receptor blockers (ARBs; losartan), or N-acetyl-L-cysteine (NAC, an ROS scavenger), had the effect of inhibiting JNK phosphorylation and leptin expression. Gel shift assay and luciferase promoter study showed that leptin/activator protein 1 (AP-1) binding and transcriptional activity to the leptin promoter increased after hypoxia, and SP600125, JNK siRNA, losartan, and NAC abolished the binding and transcriptional activity induced by hypoxia. The use of SP600125, JNK siRNA, losartan, and NAC effectively inhibited the binding and transcriptional activity induced by hypoxia. Migration and proliferation, ROS generation, and the presence of leptin in the nuclei of HCASMCs also increased under hypoxia.
Hypoxia in HCASMCs increases leptin expression through the induction of AngII, ROS, and the JNK pathway to enhance atherosclerosis in HCASMCs. |
---|---|
ISSN: | 1423-0127 1021-7770 1423-0127 |
DOI: | 10.1186/s12929-014-0109-8 |