Loading…
Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes
Neurotrophin‐3 (NT‐3) regulates oligodendrocyte (OLG) differentiation by mechanisms that remain poorly understood. Exposure of OLGs to NT‐3 induces a significant increase in the levels of myelin basic protein (MBP). However, we found that this stimulation occurs in the absence of measurable effects...
Saved in:
Published in: | Glia 2009-12, Vol.57 (16), p.1754-1764 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4898-ffb8ac05383c6a87f443c8a0cf9adb6eb18cece869ec60d11bb50cc7d12b23573 |
---|---|
cites | cdi_FETCH-LOGICAL-c4898-ffb8ac05383c6a87f443c8a0cf9adb6eb18cece869ec60d11bb50cc7d12b23573 |
container_end_page | 1764 |
container_issue | 16 |
container_start_page | 1754 |
container_title | Glia |
container_volume | 57 |
creator | Coelho, Rochelle P. Yuelling, Larra M. Fuss, Babette Sato-Bigbee, Carmen |
description | Neurotrophin‐3 (NT‐3) regulates oligodendrocyte (OLG) differentiation by mechanisms that remain poorly understood. Exposure of OLGs to NT‐3 induces a significant increase in the levels of myelin basic protein (MBP). However, we found that this stimulation occurs in the absence of measurable effects on MBP gene promoter activation or mRNA expression, suggesting that NT‐3 upregulates MBP protein expression by a posttranscriptional mechanism. Furthermore, NT‐3 also causes an increase in the levels of myelin‐associated glycoprotein (MAG) and myelin OLG glycoprotein (MOG), raising the possibility of a more general effect on myelin protein synthesis. Surprisingly, 35S‐methionine incorporation into total OLG proteins demonstrated a 50% increase in labeling following only a brief, 15‐min treatment with NT‐3. Such a remarkably fast response is unlikely due to transcriptional activation, reinforcing the possibility that NT‐3 may play a crucial role in regulating protein expression by a posttranscriptional mechanism. In support of this idea, we found that NT‐3 stimulates the phosphorylation of essential regulators of the initiation machinery, eukaryotic initiation factor 4E (eIF4E), and its inhibitory binding partner 4E binding protein 1 (4EBP1), two crucial players in controlling cap‐dependent protein synthesis. This stimulation involves the activation of pathways mediated by ERK1/2 and PI3K/mTOR, implicating these two kinase systems as modulators of protein synthesis in developing OLGs. Altogether, these observations show for the first time that NT‐3 has the capacity of targeting the translational machinery and suggest a potential stimulatory effect of this neurotrophin on myelination by direct action on protein translation in the OLGs. © 2009 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/glia.20888 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4300950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>744622550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4898-ffb8ac05383c6a87f443c8a0cf9adb6eb18cece869ec60d11bb50cc7d12b23573</originalsourceid><addsrcrecordid>eNp9kUFPGzEQha2qCFLKpT-g2lslpIXx2t71XpAQoikoClRtRW-W1zubuDjrYDtt8-9ZkpSWS0-jGX_z5smPkHcUTihAcTpzVp8UIKV8RUYUaplTysrXZASy5jnlNT0gb2L8AUCHptonB7TmQggJI_J5iqvgU_DLue1zliUdZphiluaYpaD76HSyvtcus71NdtNkC20GGsN6GGbe2ZlvsW-DN-uE8S3Z67SLeLSrh-Tbx8uvF5_yyc346uJ8khsuB4td10htQDDJTKll1XHOjNRgulq3TYkNlQYNyrJGU0JLadMIMKZqadEUTFTskJxtdZerZoGtwX7w69Qy2IUOa-W1VS9fejtXM_9TcQZQCxgEPuwEgn9YYUxqYaNB53SPfhVVxXlZFGJDHm9JE3yMAbvnKxTUUwTqKQK1iWCA3__r6y-6-_MBoFvgl3W4_o-UGk-uzv-I5tsdGxP-ft7R4V6VFauEupuO1e2drL58v56qW_YIvFWkdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744622550</pqid></control><display><type>article</type><title>Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Coelho, Rochelle P. ; Yuelling, Larra M. ; Fuss, Babette ; Sato-Bigbee, Carmen</creator><creatorcontrib>Coelho, Rochelle P. ; Yuelling, Larra M. ; Fuss, Babette ; Sato-Bigbee, Carmen</creatorcontrib><description>Neurotrophin‐3 (NT‐3) regulates oligodendrocyte (OLG) differentiation by mechanisms that remain poorly understood. Exposure of OLGs to NT‐3 induces a significant increase in the levels of myelin basic protein (MBP). However, we found that this stimulation occurs in the absence of measurable effects on MBP gene promoter activation or mRNA expression, suggesting that NT‐3 upregulates MBP protein expression by a posttranscriptional mechanism. Furthermore, NT‐3 also causes an increase in the levels of myelin‐associated glycoprotein (MAG) and myelin OLG glycoprotein (MOG), raising the possibility of a more general effect on myelin protein synthesis. Surprisingly, 35S‐methionine incorporation into total OLG proteins demonstrated a 50% increase in labeling following only a brief, 15‐min treatment with NT‐3. Such a remarkably fast response is unlikely due to transcriptional activation, reinforcing the possibility that NT‐3 may play a crucial role in regulating protein expression by a posttranscriptional mechanism. In support of this idea, we found that NT‐3 stimulates the phosphorylation of essential regulators of the initiation machinery, eukaryotic initiation factor 4E (eIF4E), and its inhibitory binding partner 4E binding protein 1 (4EBP1), two crucial players in controlling cap‐dependent protein synthesis. This stimulation involves the activation of pathways mediated by ERK1/2 and PI3K/mTOR, implicating these two kinase systems as modulators of protein synthesis in developing OLGs. Altogether, these observations show for the first time that NT‐3 has the capacity of targeting the translational machinery and suggest a potential stimulatory effect of this neurotrophin on myelination by direct action on protein translation in the OLGs. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.20888</identifier><identifier>PMID: 19455580</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Analysis of Variance ; Animals ; Blotting, Western ; Cell Differentiation - drug effects ; Cells, Cultured ; Dose-Response Relationship, Drug ; Eukaryotic Initiation Factor-4E - genetics ; Eukaryotic Initiation Factor-4E - metabolism ; Mitogen-Activated Protein Kinase 3 - genetics ; Mitogen-Activated Protein Kinase 3 - metabolism ; Myelin Basic Protein - genetics ; Myelin Basic Protein - metabolism ; Myelin Proteins ; Myelin Sheath - drug effects ; Myelin Sheath - genetics ; Myelin Sheath - metabolism ; Myelin-Associated Glycoprotein - genetics ; Myelin-Associated Glycoprotein - metabolism ; Myelin-Oligodendrocyte Glycoprotein ; myelination ; Neurotrophin 3 - metabolism ; Neurotrophin 3 - pharmacology ; neurotrophin-3 ; oligodendrocytes ; Oligodendroglia - drug effects ; Oligodendroglia - metabolism ; Phosphatidylinositol 3-Kinases - genetics ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylation ; Promoter Regions, Genetic - drug effects ; Promoter Regions, Genetic - genetics ; Protein Biosynthesis - drug effects ; Protein Biosynthesis - genetics ; Protein Biosynthesis - physiology ; Rats ; Rats, Sprague-Dawley ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - drug effects ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Signal Transduction - physiology ; translational regulation</subject><ispartof>Glia, 2009-12, Vol.57 (16), p.1754-1764</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4898-ffb8ac05383c6a87f443c8a0cf9adb6eb18cece869ec60d11bb50cc7d12b23573</citedby><cites>FETCH-LOGICAL-c4898-ffb8ac05383c6a87f443c8a0cf9adb6eb18cece869ec60d11bb50cc7d12b23573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19455580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coelho, Rochelle P.</creatorcontrib><creatorcontrib>Yuelling, Larra M.</creatorcontrib><creatorcontrib>Fuss, Babette</creatorcontrib><creatorcontrib>Sato-Bigbee, Carmen</creatorcontrib><title>Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes</title><title>Glia</title><addtitle>Glia</addtitle><description>Neurotrophin‐3 (NT‐3) regulates oligodendrocyte (OLG) differentiation by mechanisms that remain poorly understood. Exposure of OLGs to NT‐3 induces a significant increase in the levels of myelin basic protein (MBP). However, we found that this stimulation occurs in the absence of measurable effects on MBP gene promoter activation or mRNA expression, suggesting that NT‐3 upregulates MBP protein expression by a posttranscriptional mechanism. Furthermore, NT‐3 also causes an increase in the levels of myelin‐associated glycoprotein (MAG) and myelin OLG glycoprotein (MOG), raising the possibility of a more general effect on myelin protein synthesis. Surprisingly, 35S‐methionine incorporation into total OLG proteins demonstrated a 50% increase in labeling following only a brief, 15‐min treatment with NT‐3. Such a remarkably fast response is unlikely due to transcriptional activation, reinforcing the possibility that NT‐3 may play a crucial role in regulating protein expression by a posttranscriptional mechanism. In support of this idea, we found that NT‐3 stimulates the phosphorylation of essential regulators of the initiation machinery, eukaryotic initiation factor 4E (eIF4E), and its inhibitory binding partner 4E binding protein 1 (4EBP1), two crucial players in controlling cap‐dependent protein synthesis. This stimulation involves the activation of pathways mediated by ERK1/2 and PI3K/mTOR, implicating these two kinase systems as modulators of protein synthesis in developing OLGs. Altogether, these observations show for the first time that NT‐3 has the capacity of targeting the translational machinery and suggest a potential stimulatory effect of this neurotrophin on myelination by direct action on protein translation in the OLGs. © 2009 Wiley‐Liss, Inc.</description><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Blotting, Western</subject><subject>Cell Differentiation - drug effects</subject><subject>Cells, Cultured</subject><subject>Dose-Response Relationship, Drug</subject><subject>Eukaryotic Initiation Factor-4E - genetics</subject><subject>Eukaryotic Initiation Factor-4E - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3 - genetics</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>Myelin Basic Protein - genetics</subject><subject>Myelin Basic Protein - metabolism</subject><subject>Myelin Proteins</subject><subject>Myelin Sheath - drug effects</subject><subject>Myelin Sheath - genetics</subject><subject>Myelin Sheath - metabolism</subject><subject>Myelin-Associated Glycoprotein - genetics</subject><subject>Myelin-Associated Glycoprotein - metabolism</subject><subject>Myelin-Oligodendrocyte Glycoprotein</subject><subject>myelination</subject><subject>Neurotrophin 3 - metabolism</subject><subject>Neurotrophin 3 - pharmacology</subject><subject>neurotrophin-3</subject><subject>oligodendrocytes</subject><subject>Oligodendroglia - drug effects</subject><subject>Oligodendroglia - metabolism</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Promoter Regions, Genetic - drug effects</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Biosynthesis - drug effects</subject><subject>Protein Biosynthesis - genetics</subject><subject>Protein Biosynthesis - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - drug effects</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>translational regulation</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kUFPGzEQha2qCFLKpT-g2lslpIXx2t71XpAQoikoClRtRW-W1zubuDjrYDtt8-9ZkpSWS0-jGX_z5smPkHcUTihAcTpzVp8UIKV8RUYUaplTysrXZASy5jnlNT0gb2L8AUCHptonB7TmQggJI_J5iqvgU_DLue1zliUdZphiluaYpaD76HSyvtcus71NdtNkC20GGsN6GGbe2ZlvsW-DN-uE8S3Z67SLeLSrh-Tbx8uvF5_yyc346uJ8khsuB4td10htQDDJTKll1XHOjNRgulq3TYkNlQYNyrJGU0JLadMIMKZqadEUTFTskJxtdZerZoGtwX7w69Qy2IUOa-W1VS9fejtXM_9TcQZQCxgEPuwEgn9YYUxqYaNB53SPfhVVxXlZFGJDHm9JE3yMAbvnKxTUUwTqKQK1iWCA3__r6y-6-_MBoFvgl3W4_o-UGk-uzv-I5tsdGxP-ft7R4V6VFauEupuO1e2drL58v56qW_YIvFWkdQ</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Coelho, Rochelle P.</creator><creator>Yuelling, Larra M.</creator><creator>Fuss, Babette</creator><creator>Sato-Bigbee, Carmen</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>200912</creationdate><title>Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes</title><author>Coelho, Rochelle P. ; Yuelling, Larra M. ; Fuss, Babette ; Sato-Bigbee, Carmen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4898-ffb8ac05383c6a87f443c8a0cf9adb6eb18cece869ec60d11bb50cc7d12b23573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Blotting, Western</topic><topic>Cell Differentiation - drug effects</topic><topic>Cells, Cultured</topic><topic>Dose-Response Relationship, Drug</topic><topic>Eukaryotic Initiation Factor-4E - genetics</topic><topic>Eukaryotic Initiation Factor-4E - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3 - genetics</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>Myelin Basic Protein - genetics</topic><topic>Myelin Basic Protein - metabolism</topic><topic>Myelin Proteins</topic><topic>Myelin Sheath - drug effects</topic><topic>Myelin Sheath - genetics</topic><topic>Myelin Sheath - metabolism</topic><topic>Myelin-Associated Glycoprotein - genetics</topic><topic>Myelin-Associated Glycoprotein - metabolism</topic><topic>Myelin-Oligodendrocyte Glycoprotein</topic><topic>myelination</topic><topic>Neurotrophin 3 - metabolism</topic><topic>Neurotrophin 3 - pharmacology</topic><topic>neurotrophin-3</topic><topic>oligodendrocytes</topic><topic>Oligodendroglia - drug effects</topic><topic>Oligodendroglia - metabolism</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Promoter Regions, Genetic - drug effects</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Biosynthesis - drug effects</topic><topic>Protein Biosynthesis - genetics</topic><topic>Protein Biosynthesis - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - drug effects</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>translational regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coelho, Rochelle P.</creatorcontrib><creatorcontrib>Yuelling, Larra M.</creatorcontrib><creatorcontrib>Fuss, Babette</creatorcontrib><creatorcontrib>Sato-Bigbee, Carmen</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coelho, Rochelle P.</au><au>Yuelling, Larra M.</au><au>Fuss, Babette</au><au>Sato-Bigbee, Carmen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2009-12</date><risdate>2009</risdate><volume>57</volume><issue>16</issue><spage>1754</spage><epage>1764</epage><pages>1754-1764</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><abstract>Neurotrophin‐3 (NT‐3) regulates oligodendrocyte (OLG) differentiation by mechanisms that remain poorly understood. Exposure of OLGs to NT‐3 induces a significant increase in the levels of myelin basic protein (MBP). However, we found that this stimulation occurs in the absence of measurable effects on MBP gene promoter activation or mRNA expression, suggesting that NT‐3 upregulates MBP protein expression by a posttranscriptional mechanism. Furthermore, NT‐3 also causes an increase in the levels of myelin‐associated glycoprotein (MAG) and myelin OLG glycoprotein (MOG), raising the possibility of a more general effect on myelin protein synthesis. Surprisingly, 35S‐methionine incorporation into total OLG proteins demonstrated a 50% increase in labeling following only a brief, 15‐min treatment with NT‐3. Such a remarkably fast response is unlikely due to transcriptional activation, reinforcing the possibility that NT‐3 may play a crucial role in regulating protein expression by a posttranscriptional mechanism. In support of this idea, we found that NT‐3 stimulates the phosphorylation of essential regulators of the initiation machinery, eukaryotic initiation factor 4E (eIF4E), and its inhibitory binding partner 4E binding protein 1 (4EBP1), two crucial players in controlling cap‐dependent protein synthesis. This stimulation involves the activation of pathways mediated by ERK1/2 and PI3K/mTOR, implicating these two kinase systems as modulators of protein synthesis in developing OLGs. Altogether, these observations show for the first time that NT‐3 has the capacity of targeting the translational machinery and suggest a potential stimulatory effect of this neurotrophin on myelination by direct action on protein translation in the OLGs. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19455580</pmid><doi>10.1002/glia.20888</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1491 |
ispartof | Glia, 2009-12, Vol.57 (16), p.1754-1764 |
issn | 0894-1491 1098-1136 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4300950 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Analysis of Variance Animals Blotting, Western Cell Differentiation - drug effects Cells, Cultured Dose-Response Relationship, Drug Eukaryotic Initiation Factor-4E - genetics Eukaryotic Initiation Factor-4E - metabolism Mitogen-Activated Protein Kinase 3 - genetics Mitogen-Activated Protein Kinase 3 - metabolism Myelin Basic Protein - genetics Myelin Basic Protein - metabolism Myelin Proteins Myelin Sheath - drug effects Myelin Sheath - genetics Myelin Sheath - metabolism Myelin-Associated Glycoprotein - genetics Myelin-Associated Glycoprotein - metabolism Myelin-Oligodendrocyte Glycoprotein myelination Neurotrophin 3 - metabolism Neurotrophin 3 - pharmacology neurotrophin-3 oligodendrocytes Oligodendroglia - drug effects Oligodendroglia - metabolism Phosphatidylinositol 3-Kinases - genetics Phosphatidylinositol 3-Kinases - metabolism Phosphorylation Promoter Regions, Genetic - drug effects Promoter Regions, Genetic - genetics Protein Biosynthesis - drug effects Protein Biosynthesis - genetics Protein Biosynthesis - physiology Rats Rats, Sprague-Dawley Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - drug effects RNA, Messenger - genetics RNA, Messenger - metabolism Signal Transduction - drug effects Signal Transduction - genetics Signal Transduction - physiology translational regulation |
title | Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurotrophin-3%20targets%20the%20translational%20initiation%20machinery%20in%20oligodendrocytes&rft.jtitle=Glia&rft.au=Coelho,%20Rochelle%20P.&rft.date=2009-12&rft.volume=57&rft.issue=16&rft.spage=1754&rft.epage=1764&rft.pages=1754-1764&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.20888&rft_dat=%3Cproquest_pubme%3E744622550%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4898-ffb8ac05383c6a87f443c8a0cf9adb6eb18cece869ec60d11bb50cc7d12b23573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=744622550&rft_id=info:pmid/19455580&rfr_iscdi=true |