Loading…

Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes

Neurotrophin‐3 (NT‐3) regulates oligodendrocyte (OLG) differentiation by mechanisms that remain poorly understood. Exposure of OLGs to NT‐3 induces a significant increase in the levels of myelin basic protein (MBP). However, we found that this stimulation occurs in the absence of measurable effects...

Full description

Saved in:
Bibliographic Details
Published in:Glia 2009-12, Vol.57 (16), p.1754-1764
Main Authors: Coelho, Rochelle P., Yuelling, Larra M., Fuss, Babette, Sato-Bigbee, Carmen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4898-ffb8ac05383c6a87f443c8a0cf9adb6eb18cece869ec60d11bb50cc7d12b23573
cites cdi_FETCH-LOGICAL-c4898-ffb8ac05383c6a87f443c8a0cf9adb6eb18cece869ec60d11bb50cc7d12b23573
container_end_page 1764
container_issue 16
container_start_page 1754
container_title Glia
container_volume 57
creator Coelho, Rochelle P.
Yuelling, Larra M.
Fuss, Babette
Sato-Bigbee, Carmen
description Neurotrophin‐3 (NT‐3) regulates oligodendrocyte (OLG) differentiation by mechanisms that remain poorly understood. Exposure of OLGs to NT‐3 induces a significant increase in the levels of myelin basic protein (MBP). However, we found that this stimulation occurs in the absence of measurable effects on MBP gene promoter activation or mRNA expression, suggesting that NT‐3 upregulates MBP protein expression by a posttranscriptional mechanism. Furthermore, NT‐3 also causes an increase in the levels of myelin‐associated glycoprotein (MAG) and myelin OLG glycoprotein (MOG), raising the possibility of a more general effect on myelin protein synthesis. Surprisingly, 35S‐methionine incorporation into total OLG proteins demonstrated a 50% increase in labeling following only a brief, 15‐min treatment with NT‐3. Such a remarkably fast response is unlikely due to transcriptional activation, reinforcing the possibility that NT‐3 may play a crucial role in regulating protein expression by a posttranscriptional mechanism. In support of this idea, we found that NT‐3 stimulates the phosphorylation of essential regulators of the initiation machinery, eukaryotic initiation factor 4E (eIF4E), and its inhibitory binding partner 4E binding protein 1 (4EBP1), two crucial players in controlling cap‐dependent protein synthesis. This stimulation involves the activation of pathways mediated by ERK1/2 and PI3K/mTOR, implicating these two kinase systems as modulators of protein synthesis in developing OLGs. Altogether, these observations show for the first time that NT‐3 has the capacity of targeting the translational machinery and suggest a potential stimulatory effect of this neurotrophin on myelination by direct action on protein translation in the OLGs. © 2009 Wiley‐Liss, Inc.
doi_str_mv 10.1002/glia.20888
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4300950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>744622550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4898-ffb8ac05383c6a87f443c8a0cf9adb6eb18cece869ec60d11bb50cc7d12b23573</originalsourceid><addsrcrecordid>eNp9kUFPGzEQha2qCFLKpT-g2lslpIXx2t71XpAQoikoClRtRW-W1zubuDjrYDtt8-9ZkpSWS0-jGX_z5smPkHcUTihAcTpzVp8UIKV8RUYUaplTysrXZASy5jnlNT0gb2L8AUCHptonB7TmQggJI_J5iqvgU_DLue1zliUdZphiluaYpaD76HSyvtcus71NdtNkC20GGsN6GGbe2ZlvsW-DN-uE8S3Z67SLeLSrh-Tbx8uvF5_yyc346uJ8khsuB4td10htQDDJTKll1XHOjNRgulq3TYkNlQYNyrJGU0JLadMIMKZqadEUTFTskJxtdZerZoGtwX7w69Qy2IUOa-W1VS9fejtXM_9TcQZQCxgEPuwEgn9YYUxqYaNB53SPfhVVxXlZFGJDHm9JE3yMAbvnKxTUUwTqKQK1iWCA3__r6y-6-_MBoFvgl3W4_o-UGk-uzv-I5tsdGxP-ft7R4V6VFauEupuO1e2drL58v56qW_YIvFWkdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744622550</pqid></control><display><type>article</type><title>Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Coelho, Rochelle P. ; Yuelling, Larra M. ; Fuss, Babette ; Sato-Bigbee, Carmen</creator><creatorcontrib>Coelho, Rochelle P. ; Yuelling, Larra M. ; Fuss, Babette ; Sato-Bigbee, Carmen</creatorcontrib><description>Neurotrophin‐3 (NT‐3) regulates oligodendrocyte (OLG) differentiation by mechanisms that remain poorly understood. Exposure of OLGs to NT‐3 induces a significant increase in the levels of myelin basic protein (MBP). However, we found that this stimulation occurs in the absence of measurable effects on MBP gene promoter activation or mRNA expression, suggesting that NT‐3 upregulates MBP protein expression by a posttranscriptional mechanism. Furthermore, NT‐3 also causes an increase in the levels of myelin‐associated glycoprotein (MAG) and myelin OLG glycoprotein (MOG), raising the possibility of a more general effect on myelin protein synthesis. Surprisingly, 35S‐methionine incorporation into total OLG proteins demonstrated a 50% increase in labeling following only a brief, 15‐min treatment with NT‐3. Such a remarkably fast response is unlikely due to transcriptional activation, reinforcing the possibility that NT‐3 may play a crucial role in regulating protein expression by a posttranscriptional mechanism. In support of this idea, we found that NT‐3 stimulates the phosphorylation of essential regulators of the initiation machinery, eukaryotic initiation factor 4E (eIF4E), and its inhibitory binding partner 4E binding protein 1 (4EBP1), two crucial players in controlling cap‐dependent protein synthesis. This stimulation involves the activation of pathways mediated by ERK1/2 and PI3K/mTOR, implicating these two kinase systems as modulators of protein synthesis in developing OLGs. Altogether, these observations show for the first time that NT‐3 has the capacity of targeting the translational machinery and suggest a potential stimulatory effect of this neurotrophin on myelination by direct action on protein translation in the OLGs. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.20888</identifier><identifier>PMID: 19455580</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Analysis of Variance ; Animals ; Blotting, Western ; Cell Differentiation - drug effects ; Cells, Cultured ; Dose-Response Relationship, Drug ; Eukaryotic Initiation Factor-4E - genetics ; Eukaryotic Initiation Factor-4E - metabolism ; Mitogen-Activated Protein Kinase 3 - genetics ; Mitogen-Activated Protein Kinase 3 - metabolism ; Myelin Basic Protein - genetics ; Myelin Basic Protein - metabolism ; Myelin Proteins ; Myelin Sheath - drug effects ; Myelin Sheath - genetics ; Myelin Sheath - metabolism ; Myelin-Associated Glycoprotein - genetics ; Myelin-Associated Glycoprotein - metabolism ; Myelin-Oligodendrocyte Glycoprotein ; myelination ; Neurotrophin 3 - metabolism ; Neurotrophin 3 - pharmacology ; neurotrophin-3 ; oligodendrocytes ; Oligodendroglia - drug effects ; Oligodendroglia - metabolism ; Phosphatidylinositol 3-Kinases - genetics ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylation ; Promoter Regions, Genetic - drug effects ; Promoter Regions, Genetic - genetics ; Protein Biosynthesis - drug effects ; Protein Biosynthesis - genetics ; Protein Biosynthesis - physiology ; Rats ; Rats, Sprague-Dawley ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - drug effects ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Signal Transduction - physiology ; translational regulation</subject><ispartof>Glia, 2009-12, Vol.57 (16), p.1754-1764</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4898-ffb8ac05383c6a87f443c8a0cf9adb6eb18cece869ec60d11bb50cc7d12b23573</citedby><cites>FETCH-LOGICAL-c4898-ffb8ac05383c6a87f443c8a0cf9adb6eb18cece869ec60d11bb50cc7d12b23573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19455580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coelho, Rochelle P.</creatorcontrib><creatorcontrib>Yuelling, Larra M.</creatorcontrib><creatorcontrib>Fuss, Babette</creatorcontrib><creatorcontrib>Sato-Bigbee, Carmen</creatorcontrib><title>Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes</title><title>Glia</title><addtitle>Glia</addtitle><description>Neurotrophin‐3 (NT‐3) regulates oligodendrocyte (OLG) differentiation by mechanisms that remain poorly understood. Exposure of OLGs to NT‐3 induces a significant increase in the levels of myelin basic protein (MBP). However, we found that this stimulation occurs in the absence of measurable effects on MBP gene promoter activation or mRNA expression, suggesting that NT‐3 upregulates MBP protein expression by a posttranscriptional mechanism. Furthermore, NT‐3 also causes an increase in the levels of myelin‐associated glycoprotein (MAG) and myelin OLG glycoprotein (MOG), raising the possibility of a more general effect on myelin protein synthesis. Surprisingly, 35S‐methionine incorporation into total OLG proteins demonstrated a 50% increase in labeling following only a brief, 15‐min treatment with NT‐3. Such a remarkably fast response is unlikely due to transcriptional activation, reinforcing the possibility that NT‐3 may play a crucial role in regulating protein expression by a posttranscriptional mechanism. In support of this idea, we found that NT‐3 stimulates the phosphorylation of essential regulators of the initiation machinery, eukaryotic initiation factor 4E (eIF4E), and its inhibitory binding partner 4E binding protein 1 (4EBP1), two crucial players in controlling cap‐dependent protein synthesis. This stimulation involves the activation of pathways mediated by ERK1/2 and PI3K/mTOR, implicating these two kinase systems as modulators of protein synthesis in developing OLGs. Altogether, these observations show for the first time that NT‐3 has the capacity of targeting the translational machinery and suggest a potential stimulatory effect of this neurotrophin on myelination by direct action on protein translation in the OLGs. © 2009 Wiley‐Liss, Inc.</description><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Blotting, Western</subject><subject>Cell Differentiation - drug effects</subject><subject>Cells, Cultured</subject><subject>Dose-Response Relationship, Drug</subject><subject>Eukaryotic Initiation Factor-4E - genetics</subject><subject>Eukaryotic Initiation Factor-4E - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3 - genetics</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>Myelin Basic Protein - genetics</subject><subject>Myelin Basic Protein - metabolism</subject><subject>Myelin Proteins</subject><subject>Myelin Sheath - drug effects</subject><subject>Myelin Sheath - genetics</subject><subject>Myelin Sheath - metabolism</subject><subject>Myelin-Associated Glycoprotein - genetics</subject><subject>Myelin-Associated Glycoprotein - metabolism</subject><subject>Myelin-Oligodendrocyte Glycoprotein</subject><subject>myelination</subject><subject>Neurotrophin 3 - metabolism</subject><subject>Neurotrophin 3 - pharmacology</subject><subject>neurotrophin-3</subject><subject>oligodendrocytes</subject><subject>Oligodendroglia - drug effects</subject><subject>Oligodendroglia - metabolism</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Promoter Regions, Genetic - drug effects</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Biosynthesis - drug effects</subject><subject>Protein Biosynthesis - genetics</subject><subject>Protein Biosynthesis - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - drug effects</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>translational regulation</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kUFPGzEQha2qCFLKpT-g2lslpIXx2t71XpAQoikoClRtRW-W1zubuDjrYDtt8-9ZkpSWS0-jGX_z5smPkHcUTihAcTpzVp8UIKV8RUYUaplTysrXZASy5jnlNT0gb2L8AUCHptonB7TmQggJI_J5iqvgU_DLue1zliUdZphiluaYpaD76HSyvtcus71NdtNkC20GGsN6GGbe2ZlvsW-DN-uE8S3Z67SLeLSrh-Tbx8uvF5_yyc346uJ8khsuB4td10htQDDJTKll1XHOjNRgulq3TYkNlQYNyrJGU0JLadMIMKZqadEUTFTskJxtdZerZoGtwX7w69Qy2IUOa-W1VS9fejtXM_9TcQZQCxgEPuwEgn9YYUxqYaNB53SPfhVVxXlZFGJDHm9JE3yMAbvnKxTUUwTqKQK1iWCA3__r6y-6-_MBoFvgl3W4_o-UGk-uzv-I5tsdGxP-ft7R4V6VFauEupuO1e2drL58v56qW_YIvFWkdQ</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Coelho, Rochelle P.</creator><creator>Yuelling, Larra M.</creator><creator>Fuss, Babette</creator><creator>Sato-Bigbee, Carmen</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>200912</creationdate><title>Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes</title><author>Coelho, Rochelle P. ; Yuelling, Larra M. ; Fuss, Babette ; Sato-Bigbee, Carmen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4898-ffb8ac05383c6a87f443c8a0cf9adb6eb18cece869ec60d11bb50cc7d12b23573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Blotting, Western</topic><topic>Cell Differentiation - drug effects</topic><topic>Cells, Cultured</topic><topic>Dose-Response Relationship, Drug</topic><topic>Eukaryotic Initiation Factor-4E - genetics</topic><topic>Eukaryotic Initiation Factor-4E - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3 - genetics</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>Myelin Basic Protein - genetics</topic><topic>Myelin Basic Protein - metabolism</topic><topic>Myelin Proteins</topic><topic>Myelin Sheath - drug effects</topic><topic>Myelin Sheath - genetics</topic><topic>Myelin Sheath - metabolism</topic><topic>Myelin-Associated Glycoprotein - genetics</topic><topic>Myelin-Associated Glycoprotein - metabolism</topic><topic>Myelin-Oligodendrocyte Glycoprotein</topic><topic>myelination</topic><topic>Neurotrophin 3 - metabolism</topic><topic>Neurotrophin 3 - pharmacology</topic><topic>neurotrophin-3</topic><topic>oligodendrocytes</topic><topic>Oligodendroglia - drug effects</topic><topic>Oligodendroglia - metabolism</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Promoter Regions, Genetic - drug effects</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Biosynthesis - drug effects</topic><topic>Protein Biosynthesis - genetics</topic><topic>Protein Biosynthesis - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - drug effects</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>translational regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coelho, Rochelle P.</creatorcontrib><creatorcontrib>Yuelling, Larra M.</creatorcontrib><creatorcontrib>Fuss, Babette</creatorcontrib><creatorcontrib>Sato-Bigbee, Carmen</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coelho, Rochelle P.</au><au>Yuelling, Larra M.</au><au>Fuss, Babette</au><au>Sato-Bigbee, Carmen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2009-12</date><risdate>2009</risdate><volume>57</volume><issue>16</issue><spage>1754</spage><epage>1764</epage><pages>1754-1764</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><abstract>Neurotrophin‐3 (NT‐3) regulates oligodendrocyte (OLG) differentiation by mechanisms that remain poorly understood. Exposure of OLGs to NT‐3 induces a significant increase in the levels of myelin basic protein (MBP). However, we found that this stimulation occurs in the absence of measurable effects on MBP gene promoter activation or mRNA expression, suggesting that NT‐3 upregulates MBP protein expression by a posttranscriptional mechanism. Furthermore, NT‐3 also causes an increase in the levels of myelin‐associated glycoprotein (MAG) and myelin OLG glycoprotein (MOG), raising the possibility of a more general effect on myelin protein synthesis. Surprisingly, 35S‐methionine incorporation into total OLG proteins demonstrated a 50% increase in labeling following only a brief, 15‐min treatment with NT‐3. Such a remarkably fast response is unlikely due to transcriptional activation, reinforcing the possibility that NT‐3 may play a crucial role in regulating protein expression by a posttranscriptional mechanism. In support of this idea, we found that NT‐3 stimulates the phosphorylation of essential regulators of the initiation machinery, eukaryotic initiation factor 4E (eIF4E), and its inhibitory binding partner 4E binding protein 1 (4EBP1), two crucial players in controlling cap‐dependent protein synthesis. This stimulation involves the activation of pathways mediated by ERK1/2 and PI3K/mTOR, implicating these two kinase systems as modulators of protein synthesis in developing OLGs. Altogether, these observations show for the first time that NT‐3 has the capacity of targeting the translational machinery and suggest a potential stimulatory effect of this neurotrophin on myelination by direct action on protein translation in the OLGs. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19455580</pmid><doi>10.1002/glia.20888</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-1491
ispartof Glia, 2009-12, Vol.57 (16), p.1754-1764
issn 0894-1491
1098-1136
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4300950
source Wiley-Blackwell Read & Publish Collection
subjects Analysis of Variance
Animals
Blotting, Western
Cell Differentiation - drug effects
Cells, Cultured
Dose-Response Relationship, Drug
Eukaryotic Initiation Factor-4E - genetics
Eukaryotic Initiation Factor-4E - metabolism
Mitogen-Activated Protein Kinase 3 - genetics
Mitogen-Activated Protein Kinase 3 - metabolism
Myelin Basic Protein - genetics
Myelin Basic Protein - metabolism
Myelin Proteins
Myelin Sheath - drug effects
Myelin Sheath - genetics
Myelin Sheath - metabolism
Myelin-Associated Glycoprotein - genetics
Myelin-Associated Glycoprotein - metabolism
Myelin-Oligodendrocyte Glycoprotein
myelination
Neurotrophin 3 - metabolism
Neurotrophin 3 - pharmacology
neurotrophin-3
oligodendrocytes
Oligodendroglia - drug effects
Oligodendroglia - metabolism
Phosphatidylinositol 3-Kinases - genetics
Phosphatidylinositol 3-Kinases - metabolism
Phosphorylation
Promoter Regions, Genetic - drug effects
Promoter Regions, Genetic - genetics
Protein Biosynthesis - drug effects
Protein Biosynthesis - genetics
Protein Biosynthesis - physiology
Rats
Rats, Sprague-Dawley
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - drug effects
RNA, Messenger - genetics
RNA, Messenger - metabolism
Signal Transduction - drug effects
Signal Transduction - genetics
Signal Transduction - physiology
translational regulation
title Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurotrophin-3%20targets%20the%20translational%20initiation%20machinery%20in%20oligodendrocytes&rft.jtitle=Glia&rft.au=Coelho,%20Rochelle%20P.&rft.date=2009-12&rft.volume=57&rft.issue=16&rft.spage=1754&rft.epage=1764&rft.pages=1754-1764&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.20888&rft_dat=%3Cproquest_pubme%3E744622550%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4898-ffb8ac05383c6a87f443c8a0cf9adb6eb18cece869ec60d11bb50cc7d12b23573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=744622550&rft_id=info:pmid/19455580&rfr_iscdi=true