Loading…

Expansion microscopy

In optical microscopy, fine structural details are resolved by using refraction to magnify images of a specimen. We discovered that by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. By covalently anchoring specific labe...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2015-01, Vol.347 (6221), p.543-548
Main Authors: Chen, Fei, Tillberg, Paul W., Boyden, Edward S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In optical microscopy, fine structural details are resolved by using refraction to magnify images of a specimen. We discovered that by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. By covalently anchoring specific labels located within the specimen directly to the polymer network, labels spaced closer than the optical diffraction limit can be isotropically separated and optically resolved, a process we call expansion microscopy (ExM). Thus, this process can be used to perform scalable superresolution microscopy with diffraction-limited microscopes. We demonstrate ExM with apparent ∼70-nanometer lateral resolution in both cultured cells and brain tissue, performing three-color superresolution imaging of ∼107 cubic micrometers of the mouse hippocampus with a conventional confocal microscope.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1260088