Loading…
Expansion microscopy
In optical microscopy, fine structural details are resolved by using refraction to magnify images of a specimen. We discovered that by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. By covalently anchoring specific labe...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2015-01, Vol.347 (6221), p.543-548 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In optical microscopy, fine structural details are resolved by using refraction to magnify images of a specimen. We discovered that by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. By covalently anchoring specific labels located within the specimen directly to the polymer network, labels spaced closer than the optical diffraction limit can be isotropically separated and optically resolved, a process we call expansion microscopy (ExM). Thus, this process can be used to perform scalable superresolution microscopy with diffraction-limited microscopes. We demonstrate ExM with apparent ∼70-nanometer lateral resolution in both cultured cells and brain tissue, performing three-color superresolution imaging of ∼107 cubic micrometers of the mouse hippocampus with a conventional confocal microscope. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1260088 |