Loading…

Time-Dependent Diffusion of Water in a Biological Model System

Packed erythrocytes are ideally suited as a model system for the study of water diffusion in biological tissue, because cell size, membrane permeability, and extracellular volume fraction can be varied independently. We used a pulsed-field-gradient spin echo NMR technique to measure the time-depende...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1994-02, Vol.91 (4), p.1229-1233
Main Authors: Latour, Lawrence L., Svoboda, Karel, Mitra, Partha P., Sotak, Christopher H.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1233
container_issue 4
container_start_page 1229
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 91
creator Latour, Lawrence L.
Svoboda, Karel
Mitra, Partha P.
Sotak, Christopher H.
description Packed erythrocytes are ideally suited as a model system for the study of water diffusion in biological tissue, because cell size, membrane permeability, and extracellular volume fraction can be varied independently. We used a pulsed-field-gradient spin echo NMR technique to measure the time-dependent diffusion coefficient D(t) in packed erythrocytes. The long-time diffusion constant, Deff, depends sensitively on the extracellular volume fraction. This may explain the drop in Deffduring the early stages of brain ischemia, where just minutes after an ischemic insult the extra-cellular volume in the affected region of the brain is significantly reduced. Using an effective medium formula, we estimate the erythrocyte membrane permeability, in good agreement with measurements on isolated cells. From the short-time behavior of D(t), we determine the surface-to-volume ratio of the cells,$\thickapprox$(0.72 μm)-1.
doi_str_mv 10.1073/pnas.91.4.1229
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_43130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2364072</jstor_id><sourcerecordid>2364072</sourcerecordid><originalsourceid>FETCH-LOGICAL-j389t-cc3a880ce0b2108bca25c51bb46b6e7822d52cac1237246c1f1e5480e55275d93</originalsourceid><addsrcrecordid>eNptkU2LFDEQhoO4rOPq1ZNCI-Ktx6TyDYug-6Ww4sEVjyGdTq8Z0snY6Rb33xvZYRjFUw7PU6m3qhB6RvCaYEnfbJMta03WbE0A9AO0IliTVjCNH6IVxiBbxYA9Qo9L2WCMNVf4GB0rghXVsEJvb8Lo23O_9an3aW7OwzAsJeTU5KH5Zmc_NSE1tnkfcsy3wdnYfMq9j82XuzL78Qk6Gmws_unuPUFfLy9uzj6015-vPp69u243VOm5dY5apbDzuIPauXMWuOOk65johJcKoOfgrCNAJTDhyEA8Zwp7zkHyXtMTdHr_73bpRt-7GnWy0WynMNrpzmQbzN8khe_mNv80jBKKa_nrXfmUfyy-zGYMxfkYbfJ5KUYKyjUjvIov_xE3eZlSHc0AJhRAUlGlF4dh9il2S6381Y7bUhc2TDa5UPYaI0IoeRiqnnBPNTHM_DmlGZYYZ_9rPuj3X7Hy5_d8U-Y87QWggmEJ9Dd-TKV7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201322736</pqid></control><display><type>article</type><title>Time-Dependent Diffusion of Water in a Biological Model System</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Latour, Lawrence L. ; Svoboda, Karel ; Mitra, Partha P. ; Sotak, Christopher H.</creator><creatorcontrib>Latour, Lawrence L. ; Svoboda, Karel ; Mitra, Partha P. ; Sotak, Christopher H.</creatorcontrib><description>Packed erythrocytes are ideally suited as a model system for the study of water diffusion in biological tissue, because cell size, membrane permeability, and extracellular volume fraction can be varied independently. We used a pulsed-field-gradient spin echo NMR technique to measure the time-dependent diffusion coefficient D(t) in packed erythrocytes. The long-time diffusion constant, Deff, depends sensitively on the extracellular volume fraction. This may explain the drop in Deffduring the early stages of brain ischemia, where just minutes after an ischemic insult the extra-cellular volume in the affected region of the brain is significantly reduced. Using an effective medium formula, we estimate the erythrocyte membrane permeability, in good agreement with measurements on isolated cells. From the short-time behavior of D(t), we determine the surface-to-volume ratio of the cells,$\thickapprox$(0.72 μm)-1.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.91.4.1229</identifier><identifier>PMID: 8108392</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Animals ; Biological and medical sciences ; Biological Transport ; Brain Ischemia ; Cattle ; Cell Membrane Permeability ; Cell membranes ; Cell Size ; Cellular biology ; Diffusion ; Diffusion coefficient ; Erythrocyte membrane ; Erythrocyte Membrane - metabolism ; Erythrocytes ; Extracellular fluid ; Fluid permeability ; Fundamental and applied biological sciences. Psychology ; General aspects, investigation technics, apparatus ; Humans ; Magnetic Resonance Spectroscopy - methods ; Material concentration ; Models, Biological ; Models, Theoretical ; Physics ; Porous materials ; Surface Properties ; Time dependence ; Time Factors ; Tissues, organs and organisms biophysics ; Ungulates ; Water - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1994-02, Vol.91 (4), p.1229-1233</ispartof><rights>Copyright 1994 The National Academy of Sciences of the United States of America</rights><rights>1994 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Feb 15, 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/91/4.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2364072$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2364072$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776,58221,58454</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4166870$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8108392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Latour, Lawrence L.</creatorcontrib><creatorcontrib>Svoboda, Karel</creatorcontrib><creatorcontrib>Mitra, Partha P.</creatorcontrib><creatorcontrib>Sotak, Christopher H.</creatorcontrib><title>Time-Dependent Diffusion of Water in a Biological Model System</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Packed erythrocytes are ideally suited as a model system for the study of water diffusion in biological tissue, because cell size, membrane permeability, and extracellular volume fraction can be varied independently. We used a pulsed-field-gradient spin echo NMR technique to measure the time-dependent diffusion coefficient D(t) in packed erythrocytes. The long-time diffusion constant, Deff, depends sensitively on the extracellular volume fraction. This may explain the drop in Deffduring the early stages of brain ischemia, where just minutes after an ischemic insult the extra-cellular volume in the affected region of the brain is significantly reduced. Using an effective medium formula, we estimate the erythrocyte membrane permeability, in good agreement with measurements on isolated cells. From the short-time behavior of D(t), we determine the surface-to-volume ratio of the cells,$\thickapprox$(0.72 μm)-1.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>Brain Ischemia</subject><subject>Cattle</subject><subject>Cell Membrane Permeability</subject><subject>Cell membranes</subject><subject>Cell Size</subject><subject>Cellular biology</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Erythrocyte membrane</subject><subject>Erythrocyte Membrane - metabolism</subject><subject>Erythrocytes</subject><subject>Extracellular fluid</subject><subject>Fluid permeability</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects, investigation technics, apparatus</subject><subject>Humans</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Material concentration</subject><subject>Models, Biological</subject><subject>Models, Theoretical</subject><subject>Physics</subject><subject>Porous materials</subject><subject>Surface Properties</subject><subject>Time dependence</subject><subject>Time Factors</subject><subject>Tissues, organs and organisms biophysics</subject><subject>Ungulates</subject><subject>Water - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNptkU2LFDEQhoO4rOPq1ZNCI-Ktx6TyDYug-6Ww4sEVjyGdTq8Z0snY6Rb33xvZYRjFUw7PU6m3qhB6RvCaYEnfbJMta03WbE0A9AO0IliTVjCNH6IVxiBbxYA9Qo9L2WCMNVf4GB0rghXVsEJvb8Lo23O_9an3aW7OwzAsJeTU5KH5Zmc_NSE1tnkfcsy3wdnYfMq9j82XuzL78Qk6Gmws_unuPUFfLy9uzj6015-vPp69u243VOm5dY5apbDzuIPauXMWuOOk65johJcKoOfgrCNAJTDhyEA8Zwp7zkHyXtMTdHr_73bpRt-7GnWy0WynMNrpzmQbzN8khe_mNv80jBKKa_nrXfmUfyy-zGYMxfkYbfJ5KUYKyjUjvIov_xE3eZlSHc0AJhRAUlGlF4dh9il2S6381Y7bUhc2TDa5UPYaI0IoeRiqnnBPNTHM_DmlGZYYZ_9rPuj3X7Hy5_d8U-Y87QWggmEJ9Dd-TKV7</recordid><startdate>19940215</startdate><enddate>19940215</enddate><creator>Latour, Lawrence L.</creator><creator>Svoboda, Karel</creator><creator>Mitra, Partha P.</creator><creator>Sotak, Christopher H.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19940215</creationdate><title>Time-Dependent Diffusion of Water in a Biological Model System</title><author>Latour, Lawrence L. ; Svoboda, Karel ; Mitra, Partha P. ; Sotak, Christopher H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j389t-cc3a880ce0b2108bca25c51bb46b6e7822d52cac1237246c1f1e5480e55275d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>Brain Ischemia</topic><topic>Cattle</topic><topic>Cell Membrane Permeability</topic><topic>Cell membranes</topic><topic>Cell Size</topic><topic>Cellular biology</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Erythrocyte membrane</topic><topic>Erythrocyte Membrane - metabolism</topic><topic>Erythrocytes</topic><topic>Extracellular fluid</topic><topic>Fluid permeability</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects, investigation technics, apparatus</topic><topic>Humans</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Material concentration</topic><topic>Models, Biological</topic><topic>Models, Theoretical</topic><topic>Physics</topic><topic>Porous materials</topic><topic>Surface Properties</topic><topic>Time dependence</topic><topic>Time Factors</topic><topic>Tissues, organs and organisms biophysics</topic><topic>Ungulates</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Latour, Lawrence L.</creatorcontrib><creatorcontrib>Svoboda, Karel</creatorcontrib><creatorcontrib>Mitra, Partha P.</creatorcontrib><creatorcontrib>Sotak, Christopher H.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Latour, Lawrence L.</au><au>Svoboda, Karel</au><au>Mitra, Partha P.</au><au>Sotak, Christopher H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Dependent Diffusion of Water in a Biological Model System</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1994-02-15</date><risdate>1994</risdate><volume>91</volume><issue>4</issue><spage>1229</spage><epage>1233</epage><pages>1229-1233</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Packed erythrocytes are ideally suited as a model system for the study of water diffusion in biological tissue, because cell size, membrane permeability, and extracellular volume fraction can be varied independently. We used a pulsed-field-gradient spin echo NMR technique to measure the time-dependent diffusion coefficient D(t) in packed erythrocytes. The long-time diffusion constant, Deff, depends sensitively on the extracellular volume fraction. This may explain the drop in Deffduring the early stages of brain ischemia, where just minutes after an ischemic insult the extra-cellular volume in the affected region of the brain is significantly reduced. Using an effective medium formula, we estimate the erythrocyte membrane permeability, in good agreement with measurements on isolated cells. From the short-time behavior of D(t), we determine the surface-to-volume ratio of the cells,$\thickapprox$(0.72 μm)-1.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8108392</pmid><doi>10.1073/pnas.91.4.1229</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1994-02, Vol.91 (4), p.1229-1233
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_43130
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Animals
Biological and medical sciences
Biological Transport
Brain Ischemia
Cattle
Cell Membrane Permeability
Cell membranes
Cell Size
Cellular biology
Diffusion
Diffusion coefficient
Erythrocyte membrane
Erythrocyte Membrane - metabolism
Erythrocytes
Extracellular fluid
Fluid permeability
Fundamental and applied biological sciences. Psychology
General aspects, investigation technics, apparatus
Humans
Magnetic Resonance Spectroscopy - methods
Material concentration
Models, Biological
Models, Theoretical
Physics
Porous materials
Surface Properties
Time dependence
Time Factors
Tissues, organs and organisms biophysics
Ungulates
Water - metabolism
title Time-Dependent Diffusion of Water in a Biological Model System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Dependent%20Diffusion%20of%20Water%20in%20a%20Biological%20Model%20System&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Latour,%20Lawrence%20L.&rft.date=1994-02-15&rft.volume=91&rft.issue=4&rft.spage=1229&rft.epage=1233&rft.pages=1229-1233&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.91.4.1229&rft_dat=%3Cjstor_pubme%3E2364072%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j389t-cc3a880ce0b2108bca25c51bb46b6e7822d52cac1237246c1f1e5480e55275d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201322736&rft_id=info:pmid/8108392&rft_jstor_id=2364072&rfr_iscdi=true