Loading…
Time-Dependent Diffusion of Water in a Biological Model System
Packed erythrocytes are ideally suited as a model system for the study of water diffusion in biological tissue, because cell size, membrane permeability, and extracellular volume fraction can be varied independently. We used a pulsed-field-gradient spin echo NMR technique to measure the time-depende...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1994-02, Vol.91 (4), p.1229-1233 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1233 |
container_issue | 4 |
container_start_page | 1229 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 91 |
creator | Latour, Lawrence L. Svoboda, Karel Mitra, Partha P. Sotak, Christopher H. |
description | Packed erythrocytes are ideally suited as a model system for the study of water diffusion in biological tissue, because cell size, membrane permeability, and extracellular volume fraction can be varied independently. We used a pulsed-field-gradient spin echo NMR technique to measure the time-dependent diffusion coefficient D(t) in packed erythrocytes. The long-time diffusion constant, Deff, depends sensitively on the extracellular volume fraction. This may explain the drop in Deffduring the early stages of brain ischemia, where just minutes after an ischemic insult the extra-cellular volume in the affected region of the brain is significantly reduced. Using an effective medium formula, we estimate the erythrocyte membrane permeability, in good agreement with measurements on isolated cells. From the short-time behavior of D(t), we determine the surface-to-volume ratio of the cells,$\thickapprox$(0.72 μm)-1. |
doi_str_mv | 10.1073/pnas.91.4.1229 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_43130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2364072</jstor_id><sourcerecordid>2364072</sourcerecordid><originalsourceid>FETCH-LOGICAL-j389t-cc3a880ce0b2108bca25c51bb46b6e7822d52cac1237246c1f1e5480e55275d93</originalsourceid><addsrcrecordid>eNptkU2LFDEQhoO4rOPq1ZNCI-Ktx6TyDYug-6Ww4sEVjyGdTq8Z0snY6Rb33xvZYRjFUw7PU6m3qhB6RvCaYEnfbJMta03WbE0A9AO0IliTVjCNH6IVxiBbxYA9Qo9L2WCMNVf4GB0rghXVsEJvb8Lo23O_9an3aW7OwzAsJeTU5KH5Zmc_NSE1tnkfcsy3wdnYfMq9j82XuzL78Qk6Gmws_unuPUFfLy9uzj6015-vPp69u243VOm5dY5apbDzuIPauXMWuOOk65johJcKoOfgrCNAJTDhyEA8Zwp7zkHyXtMTdHr_73bpRt-7GnWy0WynMNrpzmQbzN8khe_mNv80jBKKa_nrXfmUfyy-zGYMxfkYbfJ5KUYKyjUjvIov_xE3eZlSHc0AJhRAUlGlF4dh9il2S6381Y7bUhc2TDa5UPYaI0IoeRiqnnBPNTHM_DmlGZYYZ_9rPuj3X7Hy5_d8U-Y87QWggmEJ9Dd-TKV7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201322736</pqid></control><display><type>article</type><title>Time-Dependent Diffusion of Water in a Biological Model System</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Latour, Lawrence L. ; Svoboda, Karel ; Mitra, Partha P. ; Sotak, Christopher H.</creator><creatorcontrib>Latour, Lawrence L. ; Svoboda, Karel ; Mitra, Partha P. ; Sotak, Christopher H.</creatorcontrib><description>Packed erythrocytes are ideally suited as a model system for the study of water diffusion in biological tissue, because cell size, membrane permeability, and extracellular volume fraction can be varied independently. We used a pulsed-field-gradient spin echo NMR technique to measure the time-dependent diffusion coefficient D(t) in packed erythrocytes. The long-time diffusion constant, Deff, depends sensitively on the extracellular volume fraction. This may explain the drop in Deffduring the early stages of brain ischemia, where just minutes after an ischemic insult the extra-cellular volume in the affected region of the brain is significantly reduced. Using an effective medium formula, we estimate the erythrocyte membrane permeability, in good agreement with measurements on isolated cells. From the short-time behavior of D(t), we determine the surface-to-volume ratio of the cells,$\thickapprox$(0.72 μm)-1.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.91.4.1229</identifier><identifier>PMID: 8108392</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Animals ; Biological and medical sciences ; Biological Transport ; Brain Ischemia ; Cattle ; Cell Membrane Permeability ; Cell membranes ; Cell Size ; Cellular biology ; Diffusion ; Diffusion coefficient ; Erythrocyte membrane ; Erythrocyte Membrane - metabolism ; Erythrocytes ; Extracellular fluid ; Fluid permeability ; Fundamental and applied biological sciences. Psychology ; General aspects, investigation technics, apparatus ; Humans ; Magnetic Resonance Spectroscopy - methods ; Material concentration ; Models, Biological ; Models, Theoretical ; Physics ; Porous materials ; Surface Properties ; Time dependence ; Time Factors ; Tissues, organs and organisms biophysics ; Ungulates ; Water - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1994-02, Vol.91 (4), p.1229-1233</ispartof><rights>Copyright 1994 The National Academy of Sciences of the United States of America</rights><rights>1994 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Feb 15, 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/91/4.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2364072$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2364072$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776,58221,58454</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4166870$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8108392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Latour, Lawrence L.</creatorcontrib><creatorcontrib>Svoboda, Karel</creatorcontrib><creatorcontrib>Mitra, Partha P.</creatorcontrib><creatorcontrib>Sotak, Christopher H.</creatorcontrib><title>Time-Dependent Diffusion of Water in a Biological Model System</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Packed erythrocytes are ideally suited as a model system for the study of water diffusion in biological tissue, because cell size, membrane permeability, and extracellular volume fraction can be varied independently. We used a pulsed-field-gradient spin echo NMR technique to measure the time-dependent diffusion coefficient D(t) in packed erythrocytes. The long-time diffusion constant, Deff, depends sensitively on the extracellular volume fraction. This may explain the drop in Deffduring the early stages of brain ischemia, where just minutes after an ischemic insult the extra-cellular volume in the affected region of the brain is significantly reduced. Using an effective medium formula, we estimate the erythrocyte membrane permeability, in good agreement with measurements on isolated cells. From the short-time behavior of D(t), we determine the surface-to-volume ratio of the cells,$\thickapprox$(0.72 μm)-1.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>Brain Ischemia</subject><subject>Cattle</subject><subject>Cell Membrane Permeability</subject><subject>Cell membranes</subject><subject>Cell Size</subject><subject>Cellular biology</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Erythrocyte membrane</subject><subject>Erythrocyte Membrane - metabolism</subject><subject>Erythrocytes</subject><subject>Extracellular fluid</subject><subject>Fluid permeability</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects, investigation technics, apparatus</subject><subject>Humans</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Material concentration</subject><subject>Models, Biological</subject><subject>Models, Theoretical</subject><subject>Physics</subject><subject>Porous materials</subject><subject>Surface Properties</subject><subject>Time dependence</subject><subject>Time Factors</subject><subject>Tissues, organs and organisms biophysics</subject><subject>Ungulates</subject><subject>Water - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNptkU2LFDEQhoO4rOPq1ZNCI-Ktx6TyDYug-6Ww4sEVjyGdTq8Z0snY6Rb33xvZYRjFUw7PU6m3qhB6RvCaYEnfbJMta03WbE0A9AO0IliTVjCNH6IVxiBbxYA9Qo9L2WCMNVf4GB0rghXVsEJvb8Lo23O_9an3aW7OwzAsJeTU5KH5Zmc_NSE1tnkfcsy3wdnYfMq9j82XuzL78Qk6Gmws_unuPUFfLy9uzj6015-vPp69u243VOm5dY5apbDzuIPauXMWuOOk65johJcKoOfgrCNAJTDhyEA8Zwp7zkHyXtMTdHr_73bpRt-7GnWy0WynMNrpzmQbzN8khe_mNv80jBKKa_nrXfmUfyy-zGYMxfkYbfJ5KUYKyjUjvIov_xE3eZlSHc0AJhRAUlGlF4dh9il2S6381Y7bUhc2TDa5UPYaI0IoeRiqnnBPNTHM_DmlGZYYZ_9rPuj3X7Hy5_d8U-Y87QWggmEJ9Dd-TKV7</recordid><startdate>19940215</startdate><enddate>19940215</enddate><creator>Latour, Lawrence L.</creator><creator>Svoboda, Karel</creator><creator>Mitra, Partha P.</creator><creator>Sotak, Christopher H.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19940215</creationdate><title>Time-Dependent Diffusion of Water in a Biological Model System</title><author>Latour, Lawrence L. ; Svoboda, Karel ; Mitra, Partha P. ; Sotak, Christopher H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j389t-cc3a880ce0b2108bca25c51bb46b6e7822d52cac1237246c1f1e5480e55275d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>Brain Ischemia</topic><topic>Cattle</topic><topic>Cell Membrane Permeability</topic><topic>Cell membranes</topic><topic>Cell Size</topic><topic>Cellular biology</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Erythrocyte membrane</topic><topic>Erythrocyte Membrane - metabolism</topic><topic>Erythrocytes</topic><topic>Extracellular fluid</topic><topic>Fluid permeability</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects, investigation technics, apparatus</topic><topic>Humans</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Material concentration</topic><topic>Models, Biological</topic><topic>Models, Theoretical</topic><topic>Physics</topic><topic>Porous materials</topic><topic>Surface Properties</topic><topic>Time dependence</topic><topic>Time Factors</topic><topic>Tissues, organs and organisms biophysics</topic><topic>Ungulates</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Latour, Lawrence L.</creatorcontrib><creatorcontrib>Svoboda, Karel</creatorcontrib><creatorcontrib>Mitra, Partha P.</creatorcontrib><creatorcontrib>Sotak, Christopher H.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Latour, Lawrence L.</au><au>Svoboda, Karel</au><au>Mitra, Partha P.</au><au>Sotak, Christopher H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Dependent Diffusion of Water in a Biological Model System</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1994-02-15</date><risdate>1994</risdate><volume>91</volume><issue>4</issue><spage>1229</spage><epage>1233</epage><pages>1229-1233</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Packed erythrocytes are ideally suited as a model system for the study of water diffusion in biological tissue, because cell size, membrane permeability, and extracellular volume fraction can be varied independently. We used a pulsed-field-gradient spin echo NMR technique to measure the time-dependent diffusion coefficient D(t) in packed erythrocytes. The long-time diffusion constant, Deff, depends sensitively on the extracellular volume fraction. This may explain the drop in Deffduring the early stages of brain ischemia, where just minutes after an ischemic insult the extra-cellular volume in the affected region of the brain is significantly reduced. Using an effective medium formula, we estimate the erythrocyte membrane permeability, in good agreement with measurements on isolated cells. From the short-time behavior of D(t), we determine the surface-to-volume ratio of the cells,$\thickapprox$(0.72 μm)-1.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8108392</pmid><doi>10.1073/pnas.91.4.1229</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1994-02, Vol.91 (4), p.1229-1233 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_43130 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Animals Biological and medical sciences Biological Transport Brain Ischemia Cattle Cell Membrane Permeability Cell membranes Cell Size Cellular biology Diffusion Diffusion coefficient Erythrocyte membrane Erythrocyte Membrane - metabolism Erythrocytes Extracellular fluid Fluid permeability Fundamental and applied biological sciences. Psychology General aspects, investigation technics, apparatus Humans Magnetic Resonance Spectroscopy - methods Material concentration Models, Biological Models, Theoretical Physics Porous materials Surface Properties Time dependence Time Factors Tissues, organs and organisms biophysics Ungulates Water - metabolism |
title | Time-Dependent Diffusion of Water in a Biological Model System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Dependent%20Diffusion%20of%20Water%20in%20a%20Biological%20Model%20System&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Latour,%20Lawrence%20L.&rft.date=1994-02-15&rft.volume=91&rft.issue=4&rft.spage=1229&rft.epage=1233&rft.pages=1229-1233&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.91.4.1229&rft_dat=%3Cjstor_pubme%3E2364072%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j389t-cc3a880ce0b2108bca25c51bb46b6e7822d52cac1237246c1f1e5480e55275d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201322736&rft_id=info:pmid/8108392&rft_jstor_id=2364072&rfr_iscdi=true |