Loading…
A model for time to fracture with a shock stream superimposed on progressive degradation: the Study of Osteoporotic Fractures
Osteoporotic hip fractures in the elderly are associated with a high mortality in the first year following fracture and a high incidence of disability among survivors. We study first and second fractures of elderly women using data from the Study of Osteoporotic Fractures. We present a new conceptua...
Saved in:
Published in: | Statistics in medicine 2015-02, Vol.34 (4), p.652-663 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Osteoporotic hip fractures in the elderly are associated with a high mortality in the first year following fracture and a high incidence of disability among survivors. We study first and second fractures of elderly women using data from the Study of Osteoporotic Fractures. We present a new conceptual framework, stochastic model, and statistical methodology for time to fracture. Our approach gives additional insights into the patterns for first and second fractures and the concomitant risk factors. Our modeling perspective involves a novel time‐to‐event methodology called threshold regression, which is based on the plausible idea that many events occur when an underlying process describing the health or condition of a person or system encounters a critical boundary or threshold for the first time. In the parlance of stochastic processes, this time to event is a first hitting time of the threshold. The underlying process in our model is a composite of a chronic degradation process for skeletal health combined with a random stream of shocks from external traumas, which taken together trigger fracture events. Copyright © 2014 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0277-6715 1097-0258 |
DOI: | 10.1002/sim.6356 |