Loading…

Culture medium of bone marrow-derived human mesenchymal stem cells effects lymphatic endothelial cells and tumor lymph vessel formation

Human bone marrow mesenchymal stem cells (hBM-MSCs) favor tumor growth and metastasis in vivo and in vitro. Neovascularization is involved in several pathological conditions, including tumor growth and metastasis. Previous studies have demonstrated that human bone marrow MSC-derived conditioned medi...

Full description

Saved in:
Bibliographic Details
Published in:Oncology letters 2015-03, Vol.9 (3), p.1221-1226
Main Authors: ZHAN, JIE, LI, YAHONG, YU, JING, ZHAO, YUANYAUN, CAO, WENMING, MA, JIE, SUN, XIAOXIAN, SUN, LI, QIAN, HUI, ZHU, WEI, XU, WENRONG
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human bone marrow mesenchymal stem cells (hBM-MSCs) favor tumor growth and metastasis in vivo and in vitro. Neovascularization is involved in several pathological conditions, including tumor growth and metastasis. Previous studies have demonstrated that human bone marrow MSC-derived conditioned medium (hBM-MSC-CM) can promote tumor growth by inducing the expression of vascular epidermal growth factor (VEGF) in tumor cells. However, the effect of BM-MSCs on tumor lymph vessel formation has yet to be elucidated. In the present study, the effect of BM-MSCs on processes involved in lymph vessel formation, including tube formation, migration and proliferation, was investigated in human-derived lymphatic endothelial cells (HDLECs). It was identified that hBM-MSC-CM promoted the tube formation and migration of HDLECs. In addition, tumor cells were revealed to participate in lymph vessel formation. In the present study, the SGC-7901, HGC-27 and GFP-MCF-7 cell lines were treated with hBM-MSC-CM. The results demonstrated that the expression of the lymph-associated markers, prospero homeobox protein 1 and VEGF receptor-3, were increased in the SGC-7901 and HGC-27 cell lines, but not in the GFP-MCF-7 cells. The tube formation assay demonstrated that the HGC-27 cells treated with hBM-MSC-CM for 20 days underwent tube formation. These findings indicate that hBM-MSC-CM can promote tube formation in HDLECs and HGC-27 cells, which may be associated with lymph vessel formation during tumor growth and metastasis.
ISSN:1792-1074
1792-1082
DOI:10.3892/ol.2015.2868