Loading…
Electron microscopy of gold nanoparticles at atomic resolution
Structure determination of gold nanoparticles (AuNPs) is necessary for understanding their physical and chemical properties, but only one AuNP larger than 1 nanometer in diameter [a 102–gold atom NP (Au102NP)] has been solved to atomic resolution. Whereas the Au102NP structure was determined by x-ra...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2014-08, Vol.345 (6199), p.909-912 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Structure determination of gold nanoparticles (AuNPs) is necessary for understanding their physical and chemical properties, but only one AuNP larger than 1 nanometer in diameter [a 102–gold atom NP (Au102NP)] has been solved to atomic resolution. Whereas the Au102NP structure was determined by x-ray crystallography, other large AuNPs have proved refractory to this approach. Here, we report the structure determination of a Au68NP at atomic resolution by aberration-corrected transmission electron microscopy, performed with the use of a minimal electron dose, an approach that should prove applicable to metal NPs in general. The structure of the Au68NP was supported by small-angle x-ray scattering and by comparison of observed infrared absorption spectra with calculations by density functional theory. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1251959 |