Loading…
Modifications of cysteine residues in the transmembrane and cytoplasmic domains of a recombinant hemagglutinin protein prevent cross-linked multimer formation and potency loss
Recombinant hemagglutinin (rHA) is the active component in Flublok®; a trivalent influenza vaccine produced using the baculovirus expression vector system (BEVS). HA is a membrane bound homotrimer in the influenza virus envelope, and the purified rHA protein assembles into higher order rosette struc...
Saved in:
Published in: | BMC biotechnology 2014-12, Vol.14 (1), p.111-1, Article 111 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c732t-3a8605dc103e423cf1501ba3bd2051febf528f33a3b612111761f0ec8457352c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c732t-3a8605dc103e423cf1501ba3bd2051febf528f33a3b612111761f0ec8457352c3 |
container_end_page | 1 |
container_issue | 1 |
container_start_page | 111 |
container_title | BMC biotechnology |
container_volume | 14 |
creator | Holtz, Kathleen M Robinson, Pamela S Matthews, Erin E Hashimoto, Yoshifumi McPherson, Clifton E Khramtsov, Nikolai Reifler, Michael J Meghrous, Jamal Rhodes, David G Cox, Manon M Srivastava, Indresh K |
description | Recombinant hemagglutinin (rHA) is the active component in Flublok®; a trivalent influenza vaccine produced using the baculovirus expression vector system (BEVS). HA is a membrane bound homotrimer in the influenza virus envelope, and the purified rHA protein assembles into higher order rosette structures in the final formulation of the vaccine. During purification and storage of the rHA, disulfide mediated cross-linking of the trimers within the rosette occurs and results in reduced potency. Potency is measured by the Single Radial Immuno-diffusion (SRID) assay to determine the amount of HA that has the correct antigenic form.
The five cysteine residues in the transmembrane (TM) and cytoplasmic (CT) domains of the rHA protein from the H3 A/Perth/16/2009 human influenza strain have been substituted to alanine and/or serine residues to produce three different site directed variants (SDVs). These SDVs have been evaluated to determine the impact of the TM and CT cysteines on potency, cross-linking, and the biochemical and biophysical properties of the rHA. Modification of these cysteine residues prevents disulfide bond cross-linking in the TM and CT, and the resulting rHA maintains potency for at least 12 months at 25 °C. The strategy of substituting TM and CT cysteines to prevent potency loss has been successfully applied to another H3 rHA protein (from the A/Texas/50/2012 influenza strain) further demonstrating the utility of the approach.
rHA potency can be maintained by preventing non-specific disulfide bonding and cross-linked multimer formation. Substitution of carboxy terminal cysteines is an alternative to using reducing agents, and permits room temperature storage of the vaccine. |
doi_str_mv | 10.1186/s12896-014-0111-y |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4320835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539629240</galeid><sourcerecordid>A539629240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c732t-3a8605dc103e423cf1501ba3bd2051febf528f33a3b612111761f0ec8457352c3</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEoqXwANwgS9zARYoPsZO9QaoqDiuKijjdWo5jb11ie2s7FftUvCKzu6V0ERerKBrL_v4_nplMVT0l-JiQTrzKhHYzUWPSwEtIvbpXHZKmpbVoOb5_Z31QPcr5EmPSdlg8rA4o5w3GjBxWvz7GwVmnVXExZBQt0qtcjAsGJZPdMJmMXEDlwqCSVMje-B6iQSoMgJa4HFX2TqMheuW2DgqkOvreBRUKujBeLRbjVFwAo2WKa3eI5trAqU4x53p04YcZkJ_G4rxJyMbkNzfafGYJkqBXaAT0cfXAqjGbJzfxqPr29s3X0_f12fm7-enJWa1bRkvNVCcwHzTBzDSUaUs4Jr1i_UAxJ9b0ltPOMgY7glCoXSuIxUZ3DW8Zp5odVa-3vsup92bQcNekRrlMzqu0klE5uXsS3IVcxGvZMIo7xsHgxY1BildQxSK9y9qMIxQvTlkS0VKBmeDdHqiYdZxiLPZBMeTL-Rp9_g96GacUoGhA8QYyZaL7Sy3UaKQLNkI2em0qTzibCTqjDQbq-D8UPIOB3sdgrIP9HcHLHQEwxfwsCzXlLD98mu_Nzr983p89_77Lki27-ceSsbfdI1iu50du50fC_Mj1_MgVaJ7dbfut4s_AsN8ABhZE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654845368</pqid></control><display><type>article</type><title>Modifications of cysteine residues in the transmembrane and cytoplasmic domains of a recombinant hemagglutinin protein prevent cross-linked multimer formation and potency loss</title><source>Open Access: PubMed Central</source><source>ProQuest - Publicly Available Content Database</source><creator>Holtz, Kathleen M ; Robinson, Pamela S ; Matthews, Erin E ; Hashimoto, Yoshifumi ; McPherson, Clifton E ; Khramtsov, Nikolai ; Reifler, Michael J ; Meghrous, Jamal ; Rhodes, David G ; Cox, Manon M ; Srivastava, Indresh K</creator><creatorcontrib>Holtz, Kathleen M ; Robinson, Pamela S ; Matthews, Erin E ; Hashimoto, Yoshifumi ; McPherson, Clifton E ; Khramtsov, Nikolai ; Reifler, Michael J ; Meghrous, Jamal ; Rhodes, David G ; Cox, Manon M ; Srivastava, Indresh K</creatorcontrib><description>Recombinant hemagglutinin (rHA) is the active component in Flublok®; a trivalent influenza vaccine produced using the baculovirus expression vector system (BEVS). HA is a membrane bound homotrimer in the influenza virus envelope, and the purified rHA protein assembles into higher order rosette structures in the final formulation of the vaccine. During purification and storage of the rHA, disulfide mediated cross-linking of the trimers within the rosette occurs and results in reduced potency. Potency is measured by the Single Radial Immuno-diffusion (SRID) assay to determine the amount of HA that has the correct antigenic form.
The five cysteine residues in the transmembrane (TM) and cytoplasmic (CT) domains of the rHA protein from the H3 A/Perth/16/2009 human influenza strain have been substituted to alanine and/or serine residues to produce three different site directed variants (SDVs). These SDVs have been evaluated to determine the impact of the TM and CT cysteines on potency, cross-linking, and the biochemical and biophysical properties of the rHA. Modification of these cysteine residues prevents disulfide bond cross-linking in the TM and CT, and the resulting rHA maintains potency for at least 12 months at 25 °C. The strategy of substituting TM and CT cysteines to prevent potency loss has been successfully applied to another H3 rHA protein (from the A/Texas/50/2012 influenza strain) further demonstrating the utility of the approach.
rHA potency can be maintained by preventing non-specific disulfide bonding and cross-linked multimer formation. Substitution of carboxy terminal cysteines is an alternative to using reducing agents, and permits room temperature storage of the vaccine.</description><identifier>ISSN: 1472-6750</identifier><identifier>EISSN: 1472-6750</identifier><identifier>DOI: 10.1186/s12896-014-0111-y</identifier><identifier>PMID: 25540031</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Animals ; Antigens ; Baculovirus ; Biotechnology industry ; Cell culture ; Chemical bonds ; Crosslinking ; Cysteine ; Cysteine - chemistry ; Cysteine - genetics ; Cysteine - immunology ; Disulfides ; Eggs ; Hemagglutinin Glycoproteins, Influenza Virus - chemistry ; Hemagglutinin Glycoproteins, Influenza Virus - genetics ; Hemagglutinin Glycoproteins, Influenza Virus - immunology ; Humans ; Influenza ; Influenza A virus - chemistry ; Influenza A virus - genetics ; Influenza A virus - immunology ; Influenza Vaccines - chemistry ; Influenza Vaccines - genetics ; Influenza Vaccines - immunology ; Influenza virus ; Influenza viruses ; Influenza, Human - immunology ; Influenza, Human - prevention & control ; Influenza, Human - virology ; Laboratory animals ; Licenses ; Mice ; Mice, Inbred BALB C ; Physiological aspects ; Protein Structure, Tertiary ; Proteins ; Recombinant ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - immunology ; Residues ; Shipments ; Thiols ; Vaccines ; Viruses</subject><ispartof>BMC biotechnology, 2014-12, Vol.14 (1), p.111-1, Article 111</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>2014 Holtz et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.</rights><rights>Holtz et al.; licensee BioMed Central. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c732t-3a8605dc103e423cf1501ba3bd2051febf528f33a3b612111761f0ec8457352c3</citedby><cites>FETCH-LOGICAL-c732t-3a8605dc103e423cf1501ba3bd2051febf528f33a3b612111761f0ec8457352c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320835/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1654845368?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25540031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holtz, Kathleen M</creatorcontrib><creatorcontrib>Robinson, Pamela S</creatorcontrib><creatorcontrib>Matthews, Erin E</creatorcontrib><creatorcontrib>Hashimoto, Yoshifumi</creatorcontrib><creatorcontrib>McPherson, Clifton E</creatorcontrib><creatorcontrib>Khramtsov, Nikolai</creatorcontrib><creatorcontrib>Reifler, Michael J</creatorcontrib><creatorcontrib>Meghrous, Jamal</creatorcontrib><creatorcontrib>Rhodes, David G</creatorcontrib><creatorcontrib>Cox, Manon M</creatorcontrib><creatorcontrib>Srivastava, Indresh K</creatorcontrib><title>Modifications of cysteine residues in the transmembrane and cytoplasmic domains of a recombinant hemagglutinin protein prevent cross-linked multimer formation and potency loss</title><title>BMC biotechnology</title><addtitle>BMC Biotechnol</addtitle><description>Recombinant hemagglutinin (rHA) is the active component in Flublok®; a trivalent influenza vaccine produced using the baculovirus expression vector system (BEVS). HA is a membrane bound homotrimer in the influenza virus envelope, and the purified rHA protein assembles into higher order rosette structures in the final formulation of the vaccine. During purification and storage of the rHA, disulfide mediated cross-linking of the trimers within the rosette occurs and results in reduced potency. Potency is measured by the Single Radial Immuno-diffusion (SRID) assay to determine the amount of HA that has the correct antigenic form.
The five cysteine residues in the transmembrane (TM) and cytoplasmic (CT) domains of the rHA protein from the H3 A/Perth/16/2009 human influenza strain have been substituted to alanine and/or serine residues to produce three different site directed variants (SDVs). These SDVs have been evaluated to determine the impact of the TM and CT cysteines on potency, cross-linking, and the biochemical and biophysical properties of the rHA. Modification of these cysteine residues prevents disulfide bond cross-linking in the TM and CT, and the resulting rHA maintains potency for at least 12 months at 25 °C. The strategy of substituting TM and CT cysteines to prevent potency loss has been successfully applied to another H3 rHA protein (from the A/Texas/50/2012 influenza strain) further demonstrating the utility of the approach.
rHA potency can be maintained by preventing non-specific disulfide bonding and cross-linked multimer formation. Substitution of carboxy terminal cysteines is an alternative to using reducing agents, and permits room temperature storage of the vaccine.</description><subject>Animals</subject><subject>Antigens</subject><subject>Baculovirus</subject><subject>Biotechnology industry</subject><subject>Cell culture</subject><subject>Chemical bonds</subject><subject>Crosslinking</subject><subject>Cysteine</subject><subject>Cysteine - chemistry</subject><subject>Cysteine - genetics</subject><subject>Cysteine - immunology</subject><subject>Disulfides</subject><subject>Eggs</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus - chemistry</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus - genetics</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus - immunology</subject><subject>Humans</subject><subject>Influenza</subject><subject>Influenza A virus - chemistry</subject><subject>Influenza A virus - genetics</subject><subject>Influenza A virus - immunology</subject><subject>Influenza Vaccines - chemistry</subject><subject>Influenza Vaccines - genetics</subject><subject>Influenza Vaccines - immunology</subject><subject>Influenza virus</subject><subject>Influenza viruses</subject><subject>Influenza, Human - immunology</subject><subject>Influenza, Human - prevention & control</subject><subject>Influenza, Human - virology</subject><subject>Laboratory animals</subject><subject>Licenses</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Physiological aspects</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Recombinant</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - immunology</subject><subject>Residues</subject><subject>Shipments</subject><subject>Thiols</subject><subject>Vaccines</subject><subject>Viruses</subject><issn>1472-6750</issn><issn>1472-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNk9tu1DAQhiMEoqXwANwgS9zARYoPsZO9QaoqDiuKijjdWo5jb11ie2s7FftUvCKzu6V0ERerKBrL_v4_nplMVT0l-JiQTrzKhHYzUWPSwEtIvbpXHZKmpbVoOb5_Z31QPcr5EmPSdlg8rA4o5w3GjBxWvz7GwVmnVXExZBQt0qtcjAsGJZPdMJmMXEDlwqCSVMje-B6iQSoMgJa4HFX2TqMheuW2DgqkOvreBRUKujBeLRbjVFwAo2WKa3eI5trAqU4x53p04YcZkJ_G4rxJyMbkNzfafGYJkqBXaAT0cfXAqjGbJzfxqPr29s3X0_f12fm7-enJWa1bRkvNVCcwHzTBzDSUaUs4Jr1i_UAxJ9b0ltPOMgY7glCoXSuIxUZ3DW8Zp5odVa-3vsup92bQcNekRrlMzqu0klE5uXsS3IVcxGvZMIo7xsHgxY1BildQxSK9y9qMIxQvTlkS0VKBmeDdHqiYdZxiLPZBMeTL-Rp9_g96GacUoGhA8QYyZaL7Sy3UaKQLNkI2em0qTzibCTqjDQbq-D8UPIOB3sdgrIP9HcHLHQEwxfwsCzXlLD98mu_Nzr983p89_77Lki27-ceSsbfdI1iu50du50fC_Mj1_MgVaJ7dbfut4s_AsN8ABhZE</recordid><startdate>20141224</startdate><enddate>20141224</enddate><creator>Holtz, Kathleen M</creator><creator>Robinson, Pamela S</creator><creator>Matthews, Erin E</creator><creator>Hashimoto, Yoshifumi</creator><creator>McPherson, Clifton E</creator><creator>Khramtsov, Nikolai</creator><creator>Reifler, Michael J</creator><creator>Meghrous, Jamal</creator><creator>Rhodes, David G</creator><creator>Cox, Manon M</creator><creator>Srivastava, Indresh K</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>KPI</scope><scope>3V.</scope><scope>7QO</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141224</creationdate><title>Modifications of cysteine residues in the transmembrane and cytoplasmic domains of a recombinant hemagglutinin protein prevent cross-linked multimer formation and potency loss</title><author>Holtz, Kathleen M ; Robinson, Pamela S ; Matthews, Erin E ; Hashimoto, Yoshifumi ; McPherson, Clifton E ; Khramtsov, Nikolai ; Reifler, Michael J ; Meghrous, Jamal ; Rhodes, David G ; Cox, Manon M ; Srivastava, Indresh K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c732t-3a8605dc103e423cf1501ba3bd2051febf528f33a3b612111761f0ec8457352c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Antigens</topic><topic>Baculovirus</topic><topic>Biotechnology industry</topic><topic>Cell culture</topic><topic>Chemical bonds</topic><topic>Crosslinking</topic><topic>Cysteine</topic><topic>Cysteine - chemistry</topic><topic>Cysteine - genetics</topic><topic>Cysteine - immunology</topic><topic>Disulfides</topic><topic>Eggs</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus - chemistry</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus - genetics</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus - immunology</topic><topic>Humans</topic><topic>Influenza</topic><topic>Influenza A virus - chemistry</topic><topic>Influenza A virus - genetics</topic><topic>Influenza A virus - immunology</topic><topic>Influenza Vaccines - chemistry</topic><topic>Influenza Vaccines - genetics</topic><topic>Influenza Vaccines - immunology</topic><topic>Influenza virus</topic><topic>Influenza viruses</topic><topic>Influenza, Human - immunology</topic><topic>Influenza, Human - prevention & control</topic><topic>Influenza, Human - virology</topic><topic>Laboratory animals</topic><topic>Licenses</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Physiological aspects</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Recombinant</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - immunology</topic><topic>Residues</topic><topic>Shipments</topic><topic>Thiols</topic><topic>Vaccines</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holtz, Kathleen M</creatorcontrib><creatorcontrib>Robinson, Pamela S</creatorcontrib><creatorcontrib>Matthews, Erin E</creatorcontrib><creatorcontrib>Hashimoto, Yoshifumi</creatorcontrib><creatorcontrib>McPherson, Clifton E</creatorcontrib><creatorcontrib>Khramtsov, Nikolai</creatorcontrib><creatorcontrib>Reifler, Michael J</creatorcontrib><creatorcontrib>Meghrous, Jamal</creatorcontrib><creatorcontrib>Rhodes, David G</creatorcontrib><creatorcontrib>Cox, Manon M</creatorcontrib><creatorcontrib>Srivastava, Indresh K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale in Context: Science</collection><collection>Gale In Context: Global Issues</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holtz, Kathleen M</au><au>Robinson, Pamela S</au><au>Matthews, Erin E</au><au>Hashimoto, Yoshifumi</au><au>McPherson, Clifton E</au><au>Khramtsov, Nikolai</au><au>Reifler, Michael J</au><au>Meghrous, Jamal</au><au>Rhodes, David G</au><au>Cox, Manon M</au><au>Srivastava, Indresh K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modifications of cysteine residues in the transmembrane and cytoplasmic domains of a recombinant hemagglutinin protein prevent cross-linked multimer formation and potency loss</atitle><jtitle>BMC biotechnology</jtitle><addtitle>BMC Biotechnol</addtitle><date>2014-12-24</date><risdate>2014</risdate><volume>14</volume><issue>1</issue><spage>111</spage><epage>1</epage><pages>111-1</pages><artnum>111</artnum><issn>1472-6750</issn><eissn>1472-6750</eissn><abstract>Recombinant hemagglutinin (rHA) is the active component in Flublok®; a trivalent influenza vaccine produced using the baculovirus expression vector system (BEVS). HA is a membrane bound homotrimer in the influenza virus envelope, and the purified rHA protein assembles into higher order rosette structures in the final formulation of the vaccine. During purification and storage of the rHA, disulfide mediated cross-linking of the trimers within the rosette occurs and results in reduced potency. Potency is measured by the Single Radial Immuno-diffusion (SRID) assay to determine the amount of HA that has the correct antigenic form.
The five cysteine residues in the transmembrane (TM) and cytoplasmic (CT) domains of the rHA protein from the H3 A/Perth/16/2009 human influenza strain have been substituted to alanine and/or serine residues to produce three different site directed variants (SDVs). These SDVs have been evaluated to determine the impact of the TM and CT cysteines on potency, cross-linking, and the biochemical and biophysical properties of the rHA. Modification of these cysteine residues prevents disulfide bond cross-linking in the TM and CT, and the resulting rHA maintains potency for at least 12 months at 25 °C. The strategy of substituting TM and CT cysteines to prevent potency loss has been successfully applied to another H3 rHA protein (from the A/Texas/50/2012 influenza strain) further demonstrating the utility of the approach.
rHA potency can be maintained by preventing non-specific disulfide bonding and cross-linked multimer formation. Substitution of carboxy terminal cysteines is an alternative to using reducing agents, and permits room temperature storage of the vaccine.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>25540031</pmid><doi>10.1186/s12896-014-0111-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1472-6750 |
ispartof | BMC biotechnology, 2014-12, Vol.14 (1), p.111-1, Article 111 |
issn | 1472-6750 1472-6750 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4320835 |
source | Open Access: PubMed Central; ProQuest - Publicly Available Content Database |
subjects | Animals Antigens Baculovirus Biotechnology industry Cell culture Chemical bonds Crosslinking Cysteine Cysteine - chemistry Cysteine - genetics Cysteine - immunology Disulfides Eggs Hemagglutinin Glycoproteins, Influenza Virus - chemistry Hemagglutinin Glycoproteins, Influenza Virus - genetics Hemagglutinin Glycoproteins, Influenza Virus - immunology Humans Influenza Influenza A virus - chemistry Influenza A virus - genetics Influenza A virus - immunology Influenza Vaccines - chemistry Influenza Vaccines - genetics Influenza Vaccines - immunology Influenza virus Influenza viruses Influenza, Human - immunology Influenza, Human - prevention & control Influenza, Human - virology Laboratory animals Licenses Mice Mice, Inbred BALB C Physiological aspects Protein Structure, Tertiary Proteins Recombinant Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - immunology Residues Shipments Thiols Vaccines Viruses |
title | Modifications of cysteine residues in the transmembrane and cytoplasmic domains of a recombinant hemagglutinin protein prevent cross-linked multimer formation and potency loss |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modifications%20of%20cysteine%20residues%20in%20the%20transmembrane%20and%20cytoplasmic%20domains%20of%20a%20recombinant%20hemagglutinin%20protein%20prevent%20cross-linked%20multimer%20formation%20and%20potency%20loss&rft.jtitle=BMC%20biotechnology&rft.au=Holtz,%20Kathleen%20M&rft.date=2014-12-24&rft.volume=14&rft.issue=1&rft.spage=111&rft.epage=1&rft.pages=111-1&rft.artnum=111&rft.issn=1472-6750&rft.eissn=1472-6750&rft_id=info:doi/10.1186/s12896-014-0111-y&rft_dat=%3Cgale_pubme%3EA539629240%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c732t-3a8605dc103e423cf1501ba3bd2051febf528f33a3b612111761f0ec8457352c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1654845368&rft_id=info:pmid/25540031&rft_galeid=A539629240&rfr_iscdi=true |