Loading…
Non-Directed Allylic C-H Acetoxylation in the Presence of Lewis Basic Heterocycles
We outline a strategy to enable non-directed Pd(II)-catalyzed C-H functionalization in the presence of Lewis basic heterocycles. In a high-throughput screen of two Pd-catalyzed C-H acetoxylation reactions, addition of a variety of -containing heterocycles is found to cause low product conversion. A...
Saved in:
Published in: | Chemical science (Cambridge) 2014-01, Vol.5 (6), p.2352-2361 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c477t-d14722565d3bf6adecd785bdd3f6a450340a858845982dec60d63a0be0dc1d543 |
---|---|
cites | cdi_FETCH-LOGICAL-c477t-d14722565d3bf6adecd785bdd3f6a450340a858845982dec60d63a0be0dc1d543 |
container_end_page | 2361 |
container_issue | 6 |
container_start_page | 2352 |
container_title | Chemical science (Cambridge) |
container_volume | 5 |
creator | Malik, Hasnain A Taylor, Buck L H Kerrigan, John R Grob, Jonathan E Houk, K N Du Bois, J Hamann, Lawrence G Patterson, Andrew W |
description | We outline a strategy to enable non-directed Pd(II)-catalyzed C-H functionalization in the presence of Lewis basic heterocycles. In a high-throughput screen of two Pd-catalyzed C-H acetoxylation reactions, addition of a variety of
-containing heterocycles is found to cause low product conversion. A pyridine-containing test substrate is selected as representative of heterocyclic scaffolds that are hypothesized to cause catalyst arrest. We pursue two approaches in parallel that allow product conversion in this representative system: Lewis acids are found to be effective
blocking groups for the Lewis basic site, and a pre-formed pyridine
-oxide is shown to enable high yield of allylic C-H acetoxylation. Computational studies with density functional theory (M06) of binding affinities of selected heterocycles to Pd(OAc)
provide an inverse correlation of the computed heterocycle-Pd(OAc)
binding affinities with the experimental conversions to products. Additionally,
H NMR binding studies provide experimental support for theoretical calculations. |
doi_str_mv | 10.1039/c3sc53414f |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4323382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826612480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-d14722565d3bf6adecd785bdd3f6a450340a858845982dec60d63a0be0dc1d543</originalsourceid><addsrcrecordid>eNqFUU1LAzEQDaKo1F78AZKjCKv53E0vQq0fFYqK6DmkyaxG0o0mW7X_3pVq1ZNzmRnem8cbHkK7lBxSwgdHlmcruaCiXkPbjAhalJIP1lczI1uon_MT6YpzKlm1ibaYLJXklG6j26vYFKc-gW3B4WEIi-AtHhVjPLTQxvdFMK2PDfYNbh8B3yTI0FjAscYTePMZn5jcHYyhhRTtwgbIO2ijNiFD_6v30P352d1oXEyuLy5Hw0lhRVW1haOiYp0R6fi0Lo0D6yolp87xbhOScEGMkkoJOVCsQ0viSm7IFIiz1EnBe-h4qfs8n87AWWjaZIJ-Tn5m0kJH4_VfpPGP-iG-asEZ54p1AvtfAim-zCG3euazhRBMA3GeNVWsLCkTivxPrVRJJflU7qGDJdWmmHOCeuWIEv0Zmf6JrCPv_f5hRf0OiH8AQwORXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786150432</pqid></control><display><type>article</type><title>Non-Directed Allylic C-H Acetoxylation in the Presence of Lewis Basic Heterocycles</title><source>NCBI_PubMed Central(免费)</source><source>Royal Society of Chemistry</source><creator>Malik, Hasnain A ; Taylor, Buck L H ; Kerrigan, John R ; Grob, Jonathan E ; Houk, K N ; Du Bois, J ; Hamann, Lawrence G ; Patterson, Andrew W</creator><creatorcontrib>Malik, Hasnain A ; Taylor, Buck L H ; Kerrigan, John R ; Grob, Jonathan E ; Houk, K N ; Du Bois, J ; Hamann, Lawrence G ; Patterson, Andrew W</creatorcontrib><description>We outline a strategy to enable non-directed Pd(II)-catalyzed C-H functionalization in the presence of Lewis basic heterocycles. In a high-throughput screen of two Pd-catalyzed C-H acetoxylation reactions, addition of a variety of
-containing heterocycles is found to cause low product conversion. A pyridine-containing test substrate is selected as representative of heterocyclic scaffolds that are hypothesized to cause catalyst arrest. We pursue two approaches in parallel that allow product conversion in this representative system: Lewis acids are found to be effective
blocking groups for the Lewis basic site, and a pre-formed pyridine
-oxide is shown to enable high yield of allylic C-H acetoxylation. Computational studies with density functional theory (M06) of binding affinities of selected heterocycles to Pd(OAc)
provide an inverse correlation of the computed heterocycle-Pd(OAc)
binding affinities with the experimental conversions to products. Additionally,
H NMR binding studies provide experimental support for theoretical calculations.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c3sc53414f</identifier><identifier>PMID: 25685311</identifier><language>eng</language><publisher>England</publisher><subject>Affinity ; Basic converters ; Binding ; Computation ; Conversion ; Lewis acid ; Palladium ; Pyridines</subject><ispartof>Chemical science (Cambridge), 2014-01, Vol.5 (6), p.2352-2361</ispartof><rights>The Royal Society of Chemistry 2013 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-d14722565d3bf6adecd785bdd3f6a450340a858845982dec60d63a0be0dc1d543</citedby><cites>FETCH-LOGICAL-c477t-d14722565d3bf6adecd785bdd3f6a450340a858845982dec60d63a0be0dc1d543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323382/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323382/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25685311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malik, Hasnain A</creatorcontrib><creatorcontrib>Taylor, Buck L H</creatorcontrib><creatorcontrib>Kerrigan, John R</creatorcontrib><creatorcontrib>Grob, Jonathan E</creatorcontrib><creatorcontrib>Houk, K N</creatorcontrib><creatorcontrib>Du Bois, J</creatorcontrib><creatorcontrib>Hamann, Lawrence G</creatorcontrib><creatorcontrib>Patterson, Andrew W</creatorcontrib><title>Non-Directed Allylic C-H Acetoxylation in the Presence of Lewis Basic Heterocycles</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>We outline a strategy to enable non-directed Pd(II)-catalyzed C-H functionalization in the presence of Lewis basic heterocycles. In a high-throughput screen of two Pd-catalyzed C-H acetoxylation reactions, addition of a variety of
-containing heterocycles is found to cause low product conversion. A pyridine-containing test substrate is selected as representative of heterocyclic scaffolds that are hypothesized to cause catalyst arrest. We pursue two approaches in parallel that allow product conversion in this representative system: Lewis acids are found to be effective
blocking groups for the Lewis basic site, and a pre-formed pyridine
-oxide is shown to enable high yield of allylic C-H acetoxylation. Computational studies with density functional theory (M06) of binding affinities of selected heterocycles to Pd(OAc)
provide an inverse correlation of the computed heterocycle-Pd(OAc)
binding affinities with the experimental conversions to products. Additionally,
H NMR binding studies provide experimental support for theoretical calculations.</description><subject>Affinity</subject><subject>Basic converters</subject><subject>Binding</subject><subject>Computation</subject><subject>Conversion</subject><subject>Lewis acid</subject><subject>Palladium</subject><subject>Pyridines</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUU1LAzEQDaKo1F78AZKjCKv53E0vQq0fFYqK6DmkyaxG0o0mW7X_3pVq1ZNzmRnem8cbHkK7lBxSwgdHlmcruaCiXkPbjAhalJIP1lczI1uon_MT6YpzKlm1ibaYLJXklG6j26vYFKc-gW3B4WEIi-AtHhVjPLTQxvdFMK2PDfYNbh8B3yTI0FjAscYTePMZn5jcHYyhhRTtwgbIO2ijNiFD_6v30P352d1oXEyuLy5Hw0lhRVW1haOiYp0R6fi0Lo0D6yolp87xbhOScEGMkkoJOVCsQ0viSm7IFIiz1EnBe-h4qfs8n87AWWjaZIJ-Tn5m0kJH4_VfpPGP-iG-asEZ54p1AvtfAim-zCG3euazhRBMA3GeNVWsLCkTivxPrVRJJflU7qGDJdWmmHOCeuWIEv0Zmf6JrCPv_f5hRf0OiH8AQwORXA</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Malik, Hasnain A</creator><creator>Taylor, Buck L H</creator><creator>Kerrigan, John R</creator><creator>Grob, Jonathan E</creator><creator>Houk, K N</creator><creator>Du Bois, J</creator><creator>Hamann, Lawrence G</creator><creator>Patterson, Andrew W</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Non-Directed Allylic C-H Acetoxylation in the Presence of Lewis Basic Heterocycles</title><author>Malik, Hasnain A ; Taylor, Buck L H ; Kerrigan, John R ; Grob, Jonathan E ; Houk, K N ; Du Bois, J ; Hamann, Lawrence G ; Patterson, Andrew W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-d14722565d3bf6adecd785bdd3f6a450340a858845982dec60d63a0be0dc1d543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Affinity</topic><topic>Basic converters</topic><topic>Binding</topic><topic>Computation</topic><topic>Conversion</topic><topic>Lewis acid</topic><topic>Palladium</topic><topic>Pyridines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malik, Hasnain A</creatorcontrib><creatorcontrib>Taylor, Buck L H</creatorcontrib><creatorcontrib>Kerrigan, John R</creatorcontrib><creatorcontrib>Grob, Jonathan E</creatorcontrib><creatorcontrib>Houk, K N</creatorcontrib><creatorcontrib>Du Bois, J</creatorcontrib><creatorcontrib>Hamann, Lawrence G</creatorcontrib><creatorcontrib>Patterson, Andrew W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malik, Hasnain A</au><au>Taylor, Buck L H</au><au>Kerrigan, John R</au><au>Grob, Jonathan E</au><au>Houk, K N</au><au>Du Bois, J</au><au>Hamann, Lawrence G</au><au>Patterson, Andrew W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Directed Allylic C-H Acetoxylation in the Presence of Lewis Basic Heterocycles</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>5</volume><issue>6</issue><spage>2352</spage><epage>2361</epage><pages>2352-2361</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>We outline a strategy to enable non-directed Pd(II)-catalyzed C-H functionalization in the presence of Lewis basic heterocycles. In a high-throughput screen of two Pd-catalyzed C-H acetoxylation reactions, addition of a variety of
-containing heterocycles is found to cause low product conversion. A pyridine-containing test substrate is selected as representative of heterocyclic scaffolds that are hypothesized to cause catalyst arrest. We pursue two approaches in parallel that allow product conversion in this representative system: Lewis acids are found to be effective
blocking groups for the Lewis basic site, and a pre-formed pyridine
-oxide is shown to enable high yield of allylic C-H acetoxylation. Computational studies with density functional theory (M06) of binding affinities of selected heterocycles to Pd(OAc)
provide an inverse correlation of the computed heterocycle-Pd(OAc)
binding affinities with the experimental conversions to products. Additionally,
H NMR binding studies provide experimental support for theoretical calculations.</abstract><cop>England</cop><pmid>25685311</pmid><doi>10.1039/c3sc53414f</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2014-01, Vol.5 (6), p.2352-2361 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4323382 |
source | NCBI_PubMed Central(免费); Royal Society of Chemistry |
subjects | Affinity Basic converters Binding Computation Conversion Lewis acid Palladium Pyridines |
title | Non-Directed Allylic C-H Acetoxylation in the Presence of Lewis Basic Heterocycles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Directed%20Allylic%20C-H%20Acetoxylation%20in%20the%20Presence%20of%20Lewis%20Basic%20Heterocycles&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Malik,%20Hasnain%20A&rft.date=2014-01-01&rft.volume=5&rft.issue=6&rft.spage=2352&rft.epage=2361&rft.pages=2352-2361&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c3sc53414f&rft_dat=%3Cproquest_pubme%3E1826612480%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-d14722565d3bf6adecd785bdd3f6a450340a858845982dec60d63a0be0dc1d543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786150432&rft_id=info:pmid/25685311&rfr_iscdi=true |