Loading…

Auditory steady-state responses in school-aged children: a pilot study

The use of Auditory Steady-State Responses (ASSRs) for auditory screening in school-aged children, particularly in children who are difficult to test and children with disabilities, has not been explored yet. This pilot study investigated the use of ASSR for auditory screening in school-aged childre...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroengineering and rehabilitation 2015-02, Vol.12 (1), p.13-13
Main Authors: Resende, Luciana Macedo de, Carvalho, Sirley Alves da Silva, Dos Santos, Thamara Suzi, Abdo, Filipe Ibraim, Romão, Matheus, Ferreira, Marcela Cristina, Tierra-Criollo, Carlos Julio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of Auditory Steady-State Responses (ASSRs) for auditory screening in school-aged children, particularly in children who are difficult to test and children with disabilities, has not been explored yet. This pilot study investigated the use of ASSR for auditory screening in school-aged children. A cross-sectional pilot study of 23 children aged 9 to 11 with normal-hearing thresholds and seven age-matched children with permanent moderate-to-profound bilateral hearing loss were examined. The tested carrier frequencies were 500, 1,000, 2,000, and 4,000 Hz, and the stimulus was modulated between 77 and 107 Hz. The ASSRs decreased according to the tested intensity levels of 50, 40, and 30 dB sound pressure level (SPL). Sensitivity and specificity were estimated from the responses of the children with normal hearing and those with hearing loss. For the children with normal hearing, the 2,000-Hz frequency was detected more often in both ears and at all intensity levels compared to the other frequencies. The 500- and 2,000-Hz frequencies resulted in different response patterns in both ears. The time until response detection increased in parallel with amplitude reduction, as expected. The overall time required for the test was 15 minutes, including the time spent in volunteer preparation. The sensitivity was 97% for the three intensities, and the best specificity value was 100%, which was observed at 50 dB. The response analysis indicated that a screening protocol for school-aged children could include 1,000, 2,000, and 4,000 Hz and that the recording of ASSRs was highly sensitive to internal and external factors. Fifty dB SPL should be considered a cut-off criterion for screening purposes because this was the intensity level with a sensitivity of 97% and a specificity of 100%. The use of ASSRs might be particularly useful in school-aged children who have difficulty performing subjective hearing tests. The sensitivity and specificity data suggested that the use of ASSRs was feasible as an auditory screening tool. In order to determine a protocol for screening, future studies should include a larger sample and children with mild hearing loss.
ISSN:1743-0003
1743-0003
DOI:10.1186/s12984-015-0003-y