Loading…
Controlling the Spins Angular Momentum in Ferromagnets with Sequences of Picosecond Acoustic Pulses
Controlling the angular momentum of spins with very short external perturbations is a key issue in modern magnetism. For example it allows manipulating the magnetization for recording purposes or for inducing high frequency spin torque oscillations. Towards that purpose it is essential to modify and...
Saved in:
Published in: | Scientific reports 2015-02, Vol.5 (1), p.8511-8511, Article 8511 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Controlling the angular momentum of spins with very short external perturbations is a key issue in modern magnetism. For example it allows manipulating the magnetization for recording purposes or for inducing high frequency spin torque oscillations. Towards that purpose it is essential to modify and control the angular momentum of the magnetization which precesses around the resultant effective magnetic field. That can be achieved with very short external magnetic field pulses or using intrinsically coupled magnetic structures, resulting in a transfer of spin torque. Here we show that using picosecond acoustic pulses is a versatile and efficient way of controlling the spin angular momentum in ferromagnets. Two or three acoustic pulses, generated by femtosecond laser pulses, allow suppressing or enhancing the magnetic precession at any arbitrary time by precisely controlling the delays and amplitudes of the optical pulses. A formal analogy with a two dimensional pendulum allows us explaining the complex trajectory of the magnetic vector perturbed by the acoustic pulses. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep08511 |