Loading…

Specialized insulin is used for chemical warfare by fish-hunting cone snails

More than 100 species of venomous cone snails (genus Conus ) are highly effective predators of fish. The vast majority of venom components identified and functionally characterized to date are neurotoxins specifically targeted to receptors, ion channels, and transporters in the nervous system of pre...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2015-02, Vol.112 (6), p.1743-1748
Main Authors: Safavi-Hemami, Helena, Gajewiak, Joanna, Karanth, Santhosh, Robinson, Samuel D., Ueberheide, Beatrix, Douglass, Adam D., Schlegel, Amnon, Imperial, Julita S., Watkins, Maren, Bandyopadhyay, Pradip K., Yandell, Mark, Li, Qing, Purcell, Anthony W., Norton, Raymond S., Ellgaard, Lars, Olivera, Baldomero M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:More than 100 species of venomous cone snails (genus Conus ) are highly effective predators of fish. The vast majority of venom components identified and functionally characterized to date are neurotoxins specifically targeted to receptors, ion channels, and transporters in the nervous system of prey, predators, or competitors. Here we describe a venom component targeting energy metabolism, a radically different mechanism. Two fish-hunting cone snails, Conus geographus and Conus tulipa , have evolved specialized insulins that are expressed as major components of their venoms. These insulins are distinctive in having much greater similarity to fish insulins than to the molluscan hormone and are unique in that posttranslational modifications characteristic of conotoxins (hydroxyproline, γ-carboxyglutamate) are present. When injected into fish, the venom insulin elicits hypoglycemic shock, a condition characterized by dangerously low blood glucose. Our evidence suggests that insulin is specifically used as a weapon for prey capture by a subset of fish-hunting cone snails that use a net strategy to capture prey. Insulin appears to be a component of the nirvana cabal, a toxin combination in these venoms that is released into the water to disorient schools of small fish, making them easier to engulf with the snail’s distended false mouth, which functions as a net. If an entire school of fish simultaneously experiences hypoglycemic shock, this should directly facilitate capture by the predatory snail. Significance The discovery and characterization of insulin, a key hormone of energy metabolism, provided a life-saving drug for diabetics. We show that insulin can be subverted for nefarious biological purposes: Venomous cone snails use specialized insulins to elicit hypoglycemic shock, facilitating capture of their fish prey. This finding extends our understanding of the chemical and functional diversity of venom components, such that the snail’s arsenal includes a diverse set of neurotoxins that alters neuronal circuitry, as well as components that override glucose homeostasis. The highly expressed venom insulins are distinct from molluscan insulins and exhibit remarkable similarity to fish insulins. They are the smallest of all insulins characterized from any source, potentially providing new insights into structure-function elements of insulin action.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1423857112