Loading…

Alteration in the Wnt microenvironment directly regulates molecular events leading to pulmonary senescence

Summary In the aging lung, the lung capacity decreases even in the absence of diseases. The progenitor cells of the distal lung, the alveolar type II cells (ATII), are essential for the repair of the gas‐exchange surface. Surfactant protein production and survival of ATII cells are supported by lipo...

Full description

Saved in:
Bibliographic Details
Published in:Aging cell 2014-10, Vol.13 (5), p.838-849
Main Authors: Kovacs, Tamas, Csongei, Veronika, Feller, Diana, Ernszt, David, Smuk, Gabor, Sarosi, Veronika, Jakab, Laszlo, Kvell, Krisztian, Bartis, Domokos, Pongracz, Judit E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary In the aging lung, the lung capacity decreases even in the absence of diseases. The progenitor cells of the distal lung, the alveolar type II cells (ATII), are essential for the repair of the gas‐exchange surface. Surfactant protein production and survival of ATII cells are supported by lipofibroblasts that are peroxisome proliferator‐activated receptor gamma (PPARγ)‐dependent special cell type of the pulmonary tissue. PPARγ levels are directly regulated by Wnt molecules; therefore, changes in the Wnt microenvironment have close control over maintenance of the distal lung. The pulmonary aging process is associated with airspace enlargement, decrease in the distal epithelial cell compartment and infiltration of inflammatory cells. qRT–PCR analysis of purified epithelial and nonepithelial cells revealed that lipofibroblast differentiation marker parathyroid hormone‐related protein receptor (PTHrPR) and PPARγ are reduced and that PPARγ reduction is regulated by Wnt4 via a β‐catenin‐dependent mechanism. Using a human in vitro 3D lung tissue model, a link was established between increased PPARγ and pro‐surfactant protein C (pro‐SPC) expression in pulmonary epithelial cells. In the senile lung, both Wnt4 and Wnt5a levels increase and both Wnt‐s increase myofibroblast‐like differentiation. Alteration of the Wnt microenvironment plays a significant role in pulmonary aging. Diminished lipo‐ and increased myofibroblast‐like differentiation are directly regulated by specific Wnt‐s, which process also controls surfactant production and pulmonary repair mechanisms.
ISSN:1474-9718
1474-9726
DOI:10.1111/acel.12240