Loading…

Exposure to Maternal Gestational Diabetes Is Associated With Higher Cardiovascular Responses to Stress in Adolescent Indians

Context: Altered endocrinal and autonomic nervous system responses to stress may link impaired intra-uterine growth with later cardiovascular disease. Objective: To test the hypothesis that offspring of gestational diabetic mothers (OGDM) have high cortisol and cardiosympathetic responses during the...

Full description

Saved in:
Bibliographic Details
Published in:The journal of clinical endocrinology and metabolism 2015-03, Vol.100 (3), p.986-993
Main Authors: Krishnaveni, Ghattu V, Veena, Sargoor R, Jones, Alexander, Srinivasan, Krishnamachari, Osmond, Clive, Karat, Samuel C, Kurpad, Anura V, Fall, Caroline H. D
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Context: Altered endocrinal and autonomic nervous system responses to stress may link impaired intra-uterine growth with later cardiovascular disease. Objective: To test the hypothesis that offspring of gestational diabetic mothers (OGDM) have high cortisol and cardiosympathetic responses during the Trier Social Stress Test for Children (TSST-C). Design: Adolescents from a birth cohort in India (n = 213; mean age, 13.5 y), including 26 OGDM, 22 offspring of diabetic fathers (ODF), and 165 offspring of nondiabetic parents (controls) completed 5 minutes each of public speaking and mental arithmetic tasks in front of two unfamiliar “evaluators” (TSST-C). Salivary cortisol concentrations were measured at baseline and at regular intervals after the TSST-C. Heart rate, blood pressure (BP), stroke volume, cardiac output, and total peripheral resistance were measured continuously at baseline, during the TSST-C, and for 10 minutes after the test using a finger cuff; the beat-to-beat values were averaged for these periods. Results: Cortisol and cardiosympathetic parameters increased from baseline during stress (P < .001). OGDM had greater systolic BP (mean difference, 5.6 mm Hg), cardiac output (0.5 L/min), and stroke volume (4.0 mL) increases and a lower total peripheral resistance rise (125 dyn · s/cm5) than controls during stress. ODF had greater systolic BP responses than controls (difference, 4.1 mm Hg); there was no difference in other cardiosympathetic parameters. Cortisol responses were similar in all three groups. Conclusions: Maternal diabetes during pregnancy is associated with higher cardiosympathetic stress responses in the offspring, which may contribute to their higher cardiovascular disease risk. Further research may confirm stress-response programming as a predictor of cardiovascular risk in OGDM.
ISSN:0021-972X
1945-7197
DOI:10.1210/jc.2014-3239