Loading…

Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton

Primary cilia are microtubule‐based organelles that project from the cell surface to enable transduction of various developmental signaling pathways. The process of intraflagellar transport (IFT) is crucial for the building and maintenance of primary cilia. Ciliary dysfunction has been found in a ra...

Full description

Saved in:
Bibliographic Details
Published in:Annals of the New York Academy of Sciences 2015-01, Vol.1335 (1), p.78-99
Main Authors: Yuan, Xue, Serra, Rosa A., Yang, Shuying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Primary cilia are microtubule‐based organelles that project from the cell surface to enable transduction of various developmental signaling pathways. The process of intraflagellar transport (IFT) is crucial for the building and maintenance of primary cilia. Ciliary dysfunction has been found in a range of disorders called ciliopathies, some of which display severe skeletal dysplasias. In recent years, interest has grown in uncovering the function of primary cilia/IFT proteins in bone development, mechanotransduction, and cellular regulation. We summarize recent advances in understanding the function of cilia and IFT proteins in the regulation of cell differentiation in osteoblasts, osteocytes, chondrocytes, and mesenchymal stem cells (MSCs). We also discuss the mechanosensory function of cilia and IFT proteins in bone cells, cilia orientation, and other functions of cilia in chondrocytes.
ISSN:0077-8923
1749-6632
DOI:10.1111/nyas.12463