Loading…
Quantitative polarized light microscopy of human cochlear sections
Dysfunction of the inner ear is the most common cause of sensorineural hearing loss, which is the most common sensory deficit worldwide. Conventional imaging modalities are unable to depict the microanatomy of the human inner ear, hence the need to explore novel imaging modalities. We provide the fi...
Saved in:
Published in: | Biomedical optics express 2015-02, Vol.6 (2), p.599-606 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dysfunction of the inner ear is the most common cause of sensorineural hearing loss, which is the most common sensory deficit worldwide. Conventional imaging modalities are unable to depict the microanatomy of the human inner ear, hence the need to explore novel imaging modalities. We provide the first characterization of the polarization dependent optical properties of human cochlear sections using quantitative polarized light microscopy (qPLM). Eight pediatric cadaveric cochlear sections, aged 0 (term) to 24 months, were selected from the US National Temporal Bone Registry, imaged with qPLM and analyzed using Image J. Retardance of the bony otic capsule and basilar membrane were substantially higher than that of the stria vascularis, spiral ganglion neurons, organ of Corti and spiral ligament across the half turns of the spiraling cochlea. qPLM provides quantitative information about the human inner ear, and awaits future exploration in vivo. |
---|---|
ISSN: | 2156-7085 2156-7085 |
DOI: | 10.1364/BOE.6.000599 |