Loading…
The MT2 receptor stimulates axonogenesis and enhances synaptic transmission by activating Akt signaling
The MT2 receptor is a principal type of G protein-coupled receptor that mainly mediates the effects of melatonin. Deficits of melatonin/MT2 signaling have been found in many neurological disorders, including Alzheimer’s disease, the most common cause of dementia in the elderly, suggesting that prese...
Saved in:
Published in: | Cell death and differentiation 2015-04, Vol.22 (4), p.583-596 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The MT2 receptor is a principal type of G protein-coupled receptor that mainly mediates the effects of melatonin. Deficits of melatonin/MT2 signaling have been found in many neurological disorders, including Alzheimer’s disease, the most common cause of dementia in the elderly, suggesting that preservation of the MT2 receptor may be beneficial to these neurological disorders. However, direct evidence linking the MT2 receptor to cognition-related synaptic plasticity remains to be established. Here, we report that the MT2 receptor, but not the MT1 receptor, is essential for axonogenesis both
in vitro
and
in vivo
. We find that axon formation is retarded in MT2 receptor knockout mice, MT2-shRNA electroporated brain slices or primary neurons treated with an MT2 receptor selective antagonist. Activation of the MT2 receptor promotes axonogenesis that is associated with an enhancement in excitatory synaptic transmission in central neurons. The signaling components downstream of the MT2 receptor consist of the Akt/GSK-3
β
/CRMP-2 cascade. The MT2 receptor C-terminal motif binds to Akt directly. Either inhibition of the MT2 receptor or disruption of MT2 receptor-Akt binding reduces axonogenesis and synaptic transmission. Our data suggest that the MT2 receptor activates Akt/GSK-3
β
/CRMP-2 signaling and is necessary and sufficient to mediate functional axonogenesis and synaptic formation in central neurons. |
---|---|
ISSN: | 1350-9047 1476-5403 |
DOI: | 10.1038/cdd.2014.195 |