Loading…

Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction

Aquaporin-1 (AQP1) enables greatly enhanced water flux across plasma membranes. The cytosolic carboxy terminus of AQP1 has two acidic motifs homologous to known carbonic anhydrase II (CAII) binding sequences. CAII colocalizes with AQP1 in the renal proximal tubule. Expression of AQP1 with CAII in Xe...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology of the cell 2015-03, Vol.26 (6), p.1106-1118
Main Authors: Vilas, Gonzalo, Krishnan, Devishree, Loganathan, Sampath Kumar, Malhotra, Darpan, Liu, Lei, Beggs, Megan Rachele, Gena, Patrizia, Calamita, Giuseppe, Jung, Martin, Zimmermann, Richard, Tamma, Grazia, Casey, Joseph Roman, Alexander, Robert Todd
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-4463aff6a86b489d893f13121d5edad8329d0d4fc9bc72b0a28138083e4bb6083
cites cdi_FETCH-LOGICAL-c393t-4463aff6a86b489d893f13121d5edad8329d0d4fc9bc72b0a28138083e4bb6083
container_end_page 1118
container_issue 6
container_start_page 1106
container_title Molecular biology of the cell
container_volume 26
creator Vilas, Gonzalo
Krishnan, Devishree
Loganathan, Sampath Kumar
Malhotra, Darpan
Liu, Lei
Beggs, Megan Rachele
Gena, Patrizia
Calamita, Giuseppe
Jung, Martin
Zimmermann, Richard
Tamma, Grazia
Casey, Joseph Roman
Alexander, Robert Todd
description Aquaporin-1 (AQP1) enables greatly enhanced water flux across plasma membranes. The cytosolic carboxy terminus of AQP1 has two acidic motifs homologous to known carbonic anhydrase II (CAII) binding sequences. CAII colocalizes with AQP1 in the renal proximal tubule. Expression of AQP1 with CAII in Xenopus oocytes or mammalian cells increased water flux relative to AQP1 expression alone. This required the amino-terminal sequence of CAII, a region that binds other transport proteins. Expression of catalytically inactive CAII failed to increase water flux through AQP1. Proximity ligation assays revealed close association of CAII and AQP1, an effect requiring the second acidic cluster of AQP1. This motif was also necessary for CAII to increase AQP1-mediated water flux. Red blood cell ghosts resealed with CAII demonstrated increased osmotic water permeability compared with ghosts resealed with albumin. Water flux across renal cortical membrane vesicles, measured by stopped-flow light scattering, was reduced in CAII-deficient mice compared with wild-type mice. These data are consistent with CAII increasing water conductance through AQP1 by a physical interaction between the two proteins.
doi_str_mv 10.1091/mbc.E14-03-0812
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4357510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664199704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-4463aff6a86b489d893f13121d5edad8329d0d4fc9bc72b0a28138083e4bb6083</originalsourceid><addsrcrecordid>eNpVUT1PwzAQtRCIlsLMhjKypPXFTmIvSKgqUKkSDDBb_goNSp3WToD-e1y1VDDd6e69d0_3ELoGPAbMYbJSejwDmmKSYgbZCRoCJzylOStOY49znkKe0QG6COEDY6C0KM_RIMsLzDFjQ_Qyd9pbGaxJvmRnfVI1_XdSO9PrOFLbRLpEbnq5bn3tUpho6VXrah3ny63xkZjM5xEfqVJ3desu0Vklm2CvDnWE3h5mr9OndPH8OJ_eL1JNOOnSaITIqiokKxRl3DBOKiCQgcmtkYaRjBtsaKW50mWmsMwYEIYZsVSpItYRutvrrnu1skZb13nZiLWvV9JvRStr8X_j6qV4bz8FJXmZA44CtwcB3256GzqxqoO2TSOdbfsgoCgocF5iGqGTPVT7NgRvq-MZwGKXg4g5iJiDwETscoiMm7_ujvjfx5MfhPSFDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664199704</pqid></control><display><type>article</type><title>Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction</title><source>Open Access: PubMed Central</source><creator>Vilas, Gonzalo ; Krishnan, Devishree ; Loganathan, Sampath Kumar ; Malhotra, Darpan ; Liu, Lei ; Beggs, Megan Rachele ; Gena, Patrizia ; Calamita, Giuseppe ; Jung, Martin ; Zimmermann, Richard ; Tamma, Grazia ; Casey, Joseph Roman ; Alexander, Robert Todd</creator><contributor>Margolis, Benjamin</contributor><creatorcontrib>Vilas, Gonzalo ; Krishnan, Devishree ; Loganathan, Sampath Kumar ; Malhotra, Darpan ; Liu, Lei ; Beggs, Megan Rachele ; Gena, Patrizia ; Calamita, Giuseppe ; Jung, Martin ; Zimmermann, Richard ; Tamma, Grazia ; Casey, Joseph Roman ; Alexander, Robert Todd ; Margolis, Benjamin</creatorcontrib><description>Aquaporin-1 (AQP1) enables greatly enhanced water flux across plasma membranes. The cytosolic carboxy terminus of AQP1 has two acidic motifs homologous to known carbonic anhydrase II (CAII) binding sequences. CAII colocalizes with AQP1 in the renal proximal tubule. Expression of AQP1 with CAII in Xenopus oocytes or mammalian cells increased water flux relative to AQP1 expression alone. This required the amino-terminal sequence of CAII, a region that binds other transport proteins. Expression of catalytically inactive CAII failed to increase water flux through AQP1. Proximity ligation assays revealed close association of CAII and AQP1, an effect requiring the second acidic cluster of AQP1. This motif was also necessary for CAII to increase AQP1-mediated water flux. Red blood cell ghosts resealed with CAII demonstrated increased osmotic water permeability compared with ghosts resealed with albumin. Water flux across renal cortical membrane vesicles, measured by stopped-flow light scattering, was reduced in CAII-deficient mice compared with wild-type mice. These data are consistent with CAII increasing water conductance through AQP1 by a physical interaction between the two proteins.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E14-03-0812</identifier><identifier>PMID: 25609088</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Amino Acid Sequence ; Animals ; Aquaporin 1 - metabolism ; Carbonic Anhydrase II - metabolism ; Cell Membrane Permeability ; Cells, Cultured ; Erythrocytes - metabolism ; HEK293 Cells ; Humans ; Molecular Sequence Data ; Protein Binding ; Protein Interaction Mapping ; Water - metabolism ; Xenopus laevis</subject><ispartof>Molecular biology of the cell, 2015-03, Vol.26 (6), p.1106-1118</ispartof><rights>2015 Vilas, Krishnan, Loganathan, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).</rights><rights>2015 Vilas, Krishnan, Loganathan, This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-4463aff6a86b489d893f13121d5edad8329d0d4fc9bc72b0a28138083e4bb6083</citedby><cites>FETCH-LOGICAL-c393t-4463aff6a86b489d893f13121d5edad8329d0d4fc9bc72b0a28138083e4bb6083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357510/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357510/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25609088$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Margolis, Benjamin</contributor><creatorcontrib>Vilas, Gonzalo</creatorcontrib><creatorcontrib>Krishnan, Devishree</creatorcontrib><creatorcontrib>Loganathan, Sampath Kumar</creatorcontrib><creatorcontrib>Malhotra, Darpan</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Beggs, Megan Rachele</creatorcontrib><creatorcontrib>Gena, Patrizia</creatorcontrib><creatorcontrib>Calamita, Giuseppe</creatorcontrib><creatorcontrib>Jung, Martin</creatorcontrib><creatorcontrib>Zimmermann, Richard</creatorcontrib><creatorcontrib>Tamma, Grazia</creatorcontrib><creatorcontrib>Casey, Joseph Roman</creatorcontrib><creatorcontrib>Alexander, Robert Todd</creatorcontrib><title>Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Aquaporin-1 (AQP1) enables greatly enhanced water flux across plasma membranes. The cytosolic carboxy terminus of AQP1 has two acidic motifs homologous to known carbonic anhydrase II (CAII) binding sequences. CAII colocalizes with AQP1 in the renal proximal tubule. Expression of AQP1 with CAII in Xenopus oocytes or mammalian cells increased water flux relative to AQP1 expression alone. This required the amino-terminal sequence of CAII, a region that binds other transport proteins. Expression of catalytically inactive CAII failed to increase water flux through AQP1. Proximity ligation assays revealed close association of CAII and AQP1, an effect requiring the second acidic cluster of AQP1. This motif was also necessary for CAII to increase AQP1-mediated water flux. Red blood cell ghosts resealed with CAII demonstrated increased osmotic water permeability compared with ghosts resealed with albumin. Water flux across renal cortical membrane vesicles, measured by stopped-flow light scattering, was reduced in CAII-deficient mice compared with wild-type mice. These data are consistent with CAII increasing water conductance through AQP1 by a physical interaction between the two proteins.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Aquaporin 1 - metabolism</subject><subject>Carbonic Anhydrase II - metabolism</subject><subject>Cell Membrane Permeability</subject><subject>Cells, Cultured</subject><subject>Erythrocytes - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Molecular Sequence Data</subject><subject>Protein Binding</subject><subject>Protein Interaction Mapping</subject><subject>Water - metabolism</subject><subject>Xenopus laevis</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpVUT1PwzAQtRCIlsLMhjKypPXFTmIvSKgqUKkSDDBb_goNSp3WToD-e1y1VDDd6e69d0_3ELoGPAbMYbJSejwDmmKSYgbZCRoCJzylOStOY49znkKe0QG6COEDY6C0KM_RIMsLzDFjQ_Qyd9pbGaxJvmRnfVI1_XdSO9PrOFLbRLpEbnq5bn3tUpho6VXrah3ny63xkZjM5xEfqVJ3desu0Vklm2CvDnWE3h5mr9OndPH8OJ_eL1JNOOnSaITIqiokKxRl3DBOKiCQgcmtkYaRjBtsaKW50mWmsMwYEIYZsVSpItYRutvrrnu1skZb13nZiLWvV9JvRStr8X_j6qV4bz8FJXmZA44CtwcB3256GzqxqoO2TSOdbfsgoCgocF5iGqGTPVT7NgRvq-MZwGKXg4g5iJiDwETscoiMm7_ujvjfx5MfhPSFDw</recordid><startdate>20150315</startdate><enddate>20150315</enddate><creator>Vilas, Gonzalo</creator><creator>Krishnan, Devishree</creator><creator>Loganathan, Sampath Kumar</creator><creator>Malhotra, Darpan</creator><creator>Liu, Lei</creator><creator>Beggs, Megan Rachele</creator><creator>Gena, Patrizia</creator><creator>Calamita, Giuseppe</creator><creator>Jung, Martin</creator><creator>Zimmermann, Richard</creator><creator>Tamma, Grazia</creator><creator>Casey, Joseph Roman</creator><creator>Alexander, Robert Todd</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150315</creationdate><title>Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction</title><author>Vilas, Gonzalo ; Krishnan, Devishree ; Loganathan, Sampath Kumar ; Malhotra, Darpan ; Liu, Lei ; Beggs, Megan Rachele ; Gena, Patrizia ; Calamita, Giuseppe ; Jung, Martin ; Zimmermann, Richard ; Tamma, Grazia ; Casey, Joseph Roman ; Alexander, Robert Todd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-4463aff6a86b489d893f13121d5edad8329d0d4fc9bc72b0a28138083e4bb6083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Aquaporin 1 - metabolism</topic><topic>Carbonic Anhydrase II - metabolism</topic><topic>Cell Membrane Permeability</topic><topic>Cells, Cultured</topic><topic>Erythrocytes - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Molecular Sequence Data</topic><topic>Protein Binding</topic><topic>Protein Interaction Mapping</topic><topic>Water - metabolism</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilas, Gonzalo</creatorcontrib><creatorcontrib>Krishnan, Devishree</creatorcontrib><creatorcontrib>Loganathan, Sampath Kumar</creatorcontrib><creatorcontrib>Malhotra, Darpan</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Beggs, Megan Rachele</creatorcontrib><creatorcontrib>Gena, Patrizia</creatorcontrib><creatorcontrib>Calamita, Giuseppe</creatorcontrib><creatorcontrib>Jung, Martin</creatorcontrib><creatorcontrib>Zimmermann, Richard</creatorcontrib><creatorcontrib>Tamma, Grazia</creatorcontrib><creatorcontrib>Casey, Joseph Roman</creatorcontrib><creatorcontrib>Alexander, Robert Todd</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilas, Gonzalo</au><au>Krishnan, Devishree</au><au>Loganathan, Sampath Kumar</au><au>Malhotra, Darpan</au><au>Liu, Lei</au><au>Beggs, Megan Rachele</au><au>Gena, Patrizia</au><au>Calamita, Giuseppe</au><au>Jung, Martin</au><au>Zimmermann, Richard</au><au>Tamma, Grazia</au><au>Casey, Joseph Roman</au><au>Alexander, Robert Todd</au><au>Margolis, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2015-03-15</date><risdate>2015</risdate><volume>26</volume><issue>6</issue><spage>1106</spage><epage>1118</epage><pages>1106-1118</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Aquaporin-1 (AQP1) enables greatly enhanced water flux across plasma membranes. The cytosolic carboxy terminus of AQP1 has two acidic motifs homologous to known carbonic anhydrase II (CAII) binding sequences. CAII colocalizes with AQP1 in the renal proximal tubule. Expression of AQP1 with CAII in Xenopus oocytes or mammalian cells increased water flux relative to AQP1 expression alone. This required the amino-terminal sequence of CAII, a region that binds other transport proteins. Expression of catalytically inactive CAII failed to increase water flux through AQP1. Proximity ligation assays revealed close association of CAII and AQP1, an effect requiring the second acidic cluster of AQP1. This motif was also necessary for CAII to increase AQP1-mediated water flux. Red blood cell ghosts resealed with CAII demonstrated increased osmotic water permeability compared with ghosts resealed with albumin. Water flux across renal cortical membrane vesicles, measured by stopped-flow light scattering, was reduced in CAII-deficient mice compared with wild-type mice. These data are consistent with CAII increasing water conductance through AQP1 by a physical interaction between the two proteins.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>25609088</pmid><doi>10.1091/mbc.E14-03-0812</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2015-03, Vol.26 (6), p.1106-1118
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4357510
source Open Access: PubMed Central
subjects Amino Acid Sequence
Animals
Aquaporin 1 - metabolism
Carbonic Anhydrase II - metabolism
Cell Membrane Permeability
Cells, Cultured
Erythrocytes - metabolism
HEK293 Cells
Humans
Molecular Sequence Data
Protein Binding
Protein Interaction Mapping
Water - metabolism
Xenopus laevis
title Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20water%20flux%20induced%20by%20an%20aquaporin-1/carbonic%20anhydrase%20II%20interaction&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Vilas,%20Gonzalo&rft.date=2015-03-15&rft.volume=26&rft.issue=6&rft.spage=1106&rft.epage=1118&rft.pages=1106-1118&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E14-03-0812&rft_dat=%3Cproquest_pubme%3E1664199704%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-4463aff6a86b489d893f13121d5edad8329d0d4fc9bc72b0a28138083e4bb6083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1664199704&rft_id=info:pmid/25609088&rfr_iscdi=true