Loading…
Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction
Aquaporin-1 (AQP1) enables greatly enhanced water flux across plasma membranes. The cytosolic carboxy terminus of AQP1 has two acidic motifs homologous to known carbonic anhydrase II (CAII) binding sequences. CAII colocalizes with AQP1 in the renal proximal tubule. Expression of AQP1 with CAII in Xe...
Saved in:
Published in: | Molecular biology of the cell 2015-03, Vol.26 (6), p.1106-1118 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-4463aff6a86b489d893f13121d5edad8329d0d4fc9bc72b0a28138083e4bb6083 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-4463aff6a86b489d893f13121d5edad8329d0d4fc9bc72b0a28138083e4bb6083 |
container_end_page | 1118 |
container_issue | 6 |
container_start_page | 1106 |
container_title | Molecular biology of the cell |
container_volume | 26 |
creator | Vilas, Gonzalo Krishnan, Devishree Loganathan, Sampath Kumar Malhotra, Darpan Liu, Lei Beggs, Megan Rachele Gena, Patrizia Calamita, Giuseppe Jung, Martin Zimmermann, Richard Tamma, Grazia Casey, Joseph Roman Alexander, Robert Todd |
description | Aquaporin-1 (AQP1) enables greatly enhanced water flux across plasma membranes. The cytosolic carboxy terminus of AQP1 has two acidic motifs homologous to known carbonic anhydrase II (CAII) binding sequences. CAII colocalizes with AQP1 in the renal proximal tubule. Expression of AQP1 with CAII in Xenopus oocytes or mammalian cells increased water flux relative to AQP1 expression alone. This required the amino-terminal sequence of CAII, a region that binds other transport proteins. Expression of catalytically inactive CAII failed to increase water flux through AQP1. Proximity ligation assays revealed close association of CAII and AQP1, an effect requiring the second acidic cluster of AQP1. This motif was also necessary for CAII to increase AQP1-mediated water flux. Red blood cell ghosts resealed with CAII demonstrated increased osmotic water permeability compared with ghosts resealed with albumin. Water flux across renal cortical membrane vesicles, measured by stopped-flow light scattering, was reduced in CAII-deficient mice compared with wild-type mice. These data are consistent with CAII increasing water conductance through AQP1 by a physical interaction between the two proteins. |
doi_str_mv | 10.1091/mbc.E14-03-0812 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4357510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664199704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-4463aff6a86b489d893f13121d5edad8329d0d4fc9bc72b0a28138083e4bb6083</originalsourceid><addsrcrecordid>eNpVUT1PwzAQtRCIlsLMhjKypPXFTmIvSKgqUKkSDDBb_goNSp3WToD-e1y1VDDd6e69d0_3ELoGPAbMYbJSejwDmmKSYgbZCRoCJzylOStOY49znkKe0QG6COEDY6C0KM_RIMsLzDFjQ_Qyd9pbGaxJvmRnfVI1_XdSO9PrOFLbRLpEbnq5bn3tUpho6VXrah3ny63xkZjM5xEfqVJ3desu0Vklm2CvDnWE3h5mr9OndPH8OJ_eL1JNOOnSaITIqiokKxRl3DBOKiCQgcmtkYaRjBtsaKW50mWmsMwYEIYZsVSpItYRutvrrnu1skZb13nZiLWvV9JvRStr8X_j6qV4bz8FJXmZA44CtwcB3256GzqxqoO2TSOdbfsgoCgocF5iGqGTPVT7NgRvq-MZwGKXg4g5iJiDwETscoiMm7_ujvjfx5MfhPSFDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664199704</pqid></control><display><type>article</type><title>Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction</title><source>Open Access: PubMed Central</source><creator>Vilas, Gonzalo ; Krishnan, Devishree ; Loganathan, Sampath Kumar ; Malhotra, Darpan ; Liu, Lei ; Beggs, Megan Rachele ; Gena, Patrizia ; Calamita, Giuseppe ; Jung, Martin ; Zimmermann, Richard ; Tamma, Grazia ; Casey, Joseph Roman ; Alexander, Robert Todd</creator><contributor>Margolis, Benjamin</contributor><creatorcontrib>Vilas, Gonzalo ; Krishnan, Devishree ; Loganathan, Sampath Kumar ; Malhotra, Darpan ; Liu, Lei ; Beggs, Megan Rachele ; Gena, Patrizia ; Calamita, Giuseppe ; Jung, Martin ; Zimmermann, Richard ; Tamma, Grazia ; Casey, Joseph Roman ; Alexander, Robert Todd ; Margolis, Benjamin</creatorcontrib><description>Aquaporin-1 (AQP1) enables greatly enhanced water flux across plasma membranes. The cytosolic carboxy terminus of AQP1 has two acidic motifs homologous to known carbonic anhydrase II (CAII) binding sequences. CAII colocalizes with AQP1 in the renal proximal tubule. Expression of AQP1 with CAII in Xenopus oocytes or mammalian cells increased water flux relative to AQP1 expression alone. This required the amino-terminal sequence of CAII, a region that binds other transport proteins. Expression of catalytically inactive CAII failed to increase water flux through AQP1. Proximity ligation assays revealed close association of CAII and AQP1, an effect requiring the second acidic cluster of AQP1. This motif was also necessary for CAII to increase AQP1-mediated water flux. Red blood cell ghosts resealed with CAII demonstrated increased osmotic water permeability compared with ghosts resealed with albumin. Water flux across renal cortical membrane vesicles, measured by stopped-flow light scattering, was reduced in CAII-deficient mice compared with wild-type mice. These data are consistent with CAII increasing water conductance through AQP1 by a physical interaction between the two proteins.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E14-03-0812</identifier><identifier>PMID: 25609088</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Amino Acid Sequence ; Animals ; Aquaporin 1 - metabolism ; Carbonic Anhydrase II - metabolism ; Cell Membrane Permeability ; Cells, Cultured ; Erythrocytes - metabolism ; HEK293 Cells ; Humans ; Molecular Sequence Data ; Protein Binding ; Protein Interaction Mapping ; Water - metabolism ; Xenopus laevis</subject><ispartof>Molecular biology of the cell, 2015-03, Vol.26 (6), p.1106-1118</ispartof><rights>2015 Vilas, Krishnan, Loganathan, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).</rights><rights>2015 Vilas, Krishnan, Loganathan, This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-4463aff6a86b489d893f13121d5edad8329d0d4fc9bc72b0a28138083e4bb6083</citedby><cites>FETCH-LOGICAL-c393t-4463aff6a86b489d893f13121d5edad8329d0d4fc9bc72b0a28138083e4bb6083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357510/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357510/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25609088$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Margolis, Benjamin</contributor><creatorcontrib>Vilas, Gonzalo</creatorcontrib><creatorcontrib>Krishnan, Devishree</creatorcontrib><creatorcontrib>Loganathan, Sampath Kumar</creatorcontrib><creatorcontrib>Malhotra, Darpan</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Beggs, Megan Rachele</creatorcontrib><creatorcontrib>Gena, Patrizia</creatorcontrib><creatorcontrib>Calamita, Giuseppe</creatorcontrib><creatorcontrib>Jung, Martin</creatorcontrib><creatorcontrib>Zimmermann, Richard</creatorcontrib><creatorcontrib>Tamma, Grazia</creatorcontrib><creatorcontrib>Casey, Joseph Roman</creatorcontrib><creatorcontrib>Alexander, Robert Todd</creatorcontrib><title>Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Aquaporin-1 (AQP1) enables greatly enhanced water flux across plasma membranes. The cytosolic carboxy terminus of AQP1 has two acidic motifs homologous to known carbonic anhydrase II (CAII) binding sequences. CAII colocalizes with AQP1 in the renal proximal tubule. Expression of AQP1 with CAII in Xenopus oocytes or mammalian cells increased water flux relative to AQP1 expression alone. This required the amino-terminal sequence of CAII, a region that binds other transport proteins. Expression of catalytically inactive CAII failed to increase water flux through AQP1. Proximity ligation assays revealed close association of CAII and AQP1, an effect requiring the second acidic cluster of AQP1. This motif was also necessary for CAII to increase AQP1-mediated water flux. Red blood cell ghosts resealed with CAII demonstrated increased osmotic water permeability compared with ghosts resealed with albumin. Water flux across renal cortical membrane vesicles, measured by stopped-flow light scattering, was reduced in CAII-deficient mice compared with wild-type mice. These data are consistent with CAII increasing water conductance through AQP1 by a physical interaction between the two proteins.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Aquaporin 1 - metabolism</subject><subject>Carbonic Anhydrase II - metabolism</subject><subject>Cell Membrane Permeability</subject><subject>Cells, Cultured</subject><subject>Erythrocytes - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Molecular Sequence Data</subject><subject>Protein Binding</subject><subject>Protein Interaction Mapping</subject><subject>Water - metabolism</subject><subject>Xenopus laevis</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpVUT1PwzAQtRCIlsLMhjKypPXFTmIvSKgqUKkSDDBb_goNSp3WToD-e1y1VDDd6e69d0_3ELoGPAbMYbJSejwDmmKSYgbZCRoCJzylOStOY49znkKe0QG6COEDY6C0KM_RIMsLzDFjQ_Qyd9pbGaxJvmRnfVI1_XdSO9PrOFLbRLpEbnq5bn3tUpho6VXrah3ny63xkZjM5xEfqVJ3desu0Vklm2CvDnWE3h5mr9OndPH8OJ_eL1JNOOnSaITIqiokKxRl3DBOKiCQgcmtkYaRjBtsaKW50mWmsMwYEIYZsVSpItYRutvrrnu1skZb13nZiLWvV9JvRStr8X_j6qV4bz8FJXmZA44CtwcB3256GzqxqoO2TSOdbfsgoCgocF5iGqGTPVT7NgRvq-MZwGKXg4g5iJiDwETscoiMm7_ujvjfx5MfhPSFDw</recordid><startdate>20150315</startdate><enddate>20150315</enddate><creator>Vilas, Gonzalo</creator><creator>Krishnan, Devishree</creator><creator>Loganathan, Sampath Kumar</creator><creator>Malhotra, Darpan</creator><creator>Liu, Lei</creator><creator>Beggs, Megan Rachele</creator><creator>Gena, Patrizia</creator><creator>Calamita, Giuseppe</creator><creator>Jung, Martin</creator><creator>Zimmermann, Richard</creator><creator>Tamma, Grazia</creator><creator>Casey, Joseph Roman</creator><creator>Alexander, Robert Todd</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150315</creationdate><title>Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction</title><author>Vilas, Gonzalo ; Krishnan, Devishree ; Loganathan, Sampath Kumar ; Malhotra, Darpan ; Liu, Lei ; Beggs, Megan Rachele ; Gena, Patrizia ; Calamita, Giuseppe ; Jung, Martin ; Zimmermann, Richard ; Tamma, Grazia ; Casey, Joseph Roman ; Alexander, Robert Todd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-4463aff6a86b489d893f13121d5edad8329d0d4fc9bc72b0a28138083e4bb6083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Aquaporin 1 - metabolism</topic><topic>Carbonic Anhydrase II - metabolism</topic><topic>Cell Membrane Permeability</topic><topic>Cells, Cultured</topic><topic>Erythrocytes - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Molecular Sequence Data</topic><topic>Protein Binding</topic><topic>Protein Interaction Mapping</topic><topic>Water - metabolism</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilas, Gonzalo</creatorcontrib><creatorcontrib>Krishnan, Devishree</creatorcontrib><creatorcontrib>Loganathan, Sampath Kumar</creatorcontrib><creatorcontrib>Malhotra, Darpan</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Beggs, Megan Rachele</creatorcontrib><creatorcontrib>Gena, Patrizia</creatorcontrib><creatorcontrib>Calamita, Giuseppe</creatorcontrib><creatorcontrib>Jung, Martin</creatorcontrib><creatorcontrib>Zimmermann, Richard</creatorcontrib><creatorcontrib>Tamma, Grazia</creatorcontrib><creatorcontrib>Casey, Joseph Roman</creatorcontrib><creatorcontrib>Alexander, Robert Todd</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilas, Gonzalo</au><au>Krishnan, Devishree</au><au>Loganathan, Sampath Kumar</au><au>Malhotra, Darpan</au><au>Liu, Lei</au><au>Beggs, Megan Rachele</au><au>Gena, Patrizia</au><au>Calamita, Giuseppe</au><au>Jung, Martin</au><au>Zimmermann, Richard</au><au>Tamma, Grazia</au><au>Casey, Joseph Roman</au><au>Alexander, Robert Todd</au><au>Margolis, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2015-03-15</date><risdate>2015</risdate><volume>26</volume><issue>6</issue><spage>1106</spage><epage>1118</epage><pages>1106-1118</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Aquaporin-1 (AQP1) enables greatly enhanced water flux across plasma membranes. The cytosolic carboxy terminus of AQP1 has two acidic motifs homologous to known carbonic anhydrase II (CAII) binding sequences. CAII colocalizes with AQP1 in the renal proximal tubule. Expression of AQP1 with CAII in Xenopus oocytes or mammalian cells increased water flux relative to AQP1 expression alone. This required the amino-terminal sequence of CAII, a region that binds other transport proteins. Expression of catalytically inactive CAII failed to increase water flux through AQP1. Proximity ligation assays revealed close association of CAII and AQP1, an effect requiring the second acidic cluster of AQP1. This motif was also necessary for CAII to increase AQP1-mediated water flux. Red blood cell ghosts resealed with CAII demonstrated increased osmotic water permeability compared with ghosts resealed with albumin. Water flux across renal cortical membrane vesicles, measured by stopped-flow light scattering, was reduced in CAII-deficient mice compared with wild-type mice. These data are consistent with CAII increasing water conductance through AQP1 by a physical interaction between the two proteins.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>25609088</pmid><doi>10.1091/mbc.E14-03-0812</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-1524 |
ispartof | Molecular biology of the cell, 2015-03, Vol.26 (6), p.1106-1118 |
issn | 1059-1524 1939-4586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4357510 |
source | Open Access: PubMed Central |
subjects | Amino Acid Sequence Animals Aquaporin 1 - metabolism Carbonic Anhydrase II - metabolism Cell Membrane Permeability Cells, Cultured Erythrocytes - metabolism HEK293 Cells Humans Molecular Sequence Data Protein Binding Protein Interaction Mapping Water - metabolism Xenopus laevis |
title | Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20water%20flux%20induced%20by%20an%20aquaporin-1/carbonic%20anhydrase%20II%20interaction&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Vilas,%20Gonzalo&rft.date=2015-03-15&rft.volume=26&rft.issue=6&rft.spage=1106&rft.epage=1118&rft.pages=1106-1118&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E14-03-0812&rft_dat=%3Cproquest_pubme%3E1664199704%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-4463aff6a86b489d893f13121d5edad8329d0d4fc9bc72b0a28138083e4bb6083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1664199704&rft_id=info:pmid/25609088&rfr_iscdi=true |